Anders Isaksen, Pedro G. Nachtigall, Robin A. Araya, Jia Hao Beh, Samuel D. Robinson, Thomas F. Hansen, Eivind A. B. Undheim
{"title":"Genome of the green-head ant, Rhytidoponera metallica, reveals mechanisms of toxin evolution in a genetically hyper-diverse eusocial species","authors":"Anders Isaksen, Pedro G. Nachtigall, Robin A. Araya, Jia Hao Beh, Samuel D. Robinson, Thomas F. Hansen, Eivind A. B. Undheim","doi":"10.1186/s13059-025-03777-2","DOIUrl":null,"url":null,"abstract":"While ants are textbook examples of eusocial animals in which altruistic behavior is maintained through kin selection, several ants form genetically diverse colonies that challenge this concept. One example is the Australian green-head ant (Rhytidoponera metallica) whose colonies harbor such extreme genetic variation that they have been speculated to represent an unstable form of eusociality. Yet, R. metallica is among the most successful ants on the Australian subcontinent. This success has been hypothesized to be partly due to the diverse venoms harbored within each colony. However, the genomic basis and evolutionary scenarios that maintain this toxin diversity remain unknown. To examine toxin genomic architecture, quantify individual-level genetic variation, and identify both proximate and ultimate mechanisms that have facilitated the toxin diversity in R. metallica, we generate a high-quality draft genome from a single worker. Most ectatotoxin genes are in clusters that contain evidence of multiple, complex gene-family expansions, some of which are likely explained by the presence of transposable elements. We also show that toxin regions of the genome exhibit elevated genetic variation despite being under strong selection and that this variation can translate to phenotypic diversity through toxin alleles with different functional properties. Taken together, our results point to classical gene duplication and diversification as the main evolutionary mechanism by which the main toxin family in ant venoms evolves, suggest toxin-gene functional diversification under frequency-dependent selection maintains colony-level venom hypervariability in R. metallica, and provide new insight into the role of multi-level selection in eusocial animals.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"62 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03777-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While ants are textbook examples of eusocial animals in which altruistic behavior is maintained through kin selection, several ants form genetically diverse colonies that challenge this concept. One example is the Australian green-head ant (Rhytidoponera metallica) whose colonies harbor such extreme genetic variation that they have been speculated to represent an unstable form of eusociality. Yet, R. metallica is among the most successful ants on the Australian subcontinent. This success has been hypothesized to be partly due to the diverse venoms harbored within each colony. However, the genomic basis and evolutionary scenarios that maintain this toxin diversity remain unknown. To examine toxin genomic architecture, quantify individual-level genetic variation, and identify both proximate and ultimate mechanisms that have facilitated the toxin diversity in R. metallica, we generate a high-quality draft genome from a single worker. Most ectatotoxin genes are in clusters that contain evidence of multiple, complex gene-family expansions, some of which are likely explained by the presence of transposable elements. We also show that toxin regions of the genome exhibit elevated genetic variation despite being under strong selection and that this variation can translate to phenotypic diversity through toxin alleles with different functional properties. Taken together, our results point to classical gene duplication and diversification as the main evolutionary mechanism by which the main toxin family in ant venoms evolves, suggest toxin-gene functional diversification under frequency-dependent selection maintains colony-level venom hypervariability in R. metallica, and provide new insight into the role of multi-level selection in eusocial animals.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.