An improved algorithm for separating clock delays from ionospheric effects in radio astronomy

IF 5.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
C. M. Cordun, M. A. Brentjens, H. K. Vedantham, M. Mevius
{"title":"An improved algorithm for separating clock delays from ionospheric effects in radio astronomy","authors":"C. M. Cordun, M. A. Brentjens, H. K. Vedantham, M. Mevius","doi":"10.1051/0004-6361/202556263","DOIUrl":null,"url":null,"abstract":"<i>Context<i/>. Low-frequency radio observations are heavily impacted by the ionosphere, where dispersive delays can outpace even instrumental clock offsets, posing a serious calibration challenge. Especially below 100 MHz, phase unwrapping difficulties and higher-order dispersion effects can complicate the separation of ionospheric and clock delays.<i>Aims<i/>. We address this challenge by introducing a method for reliably separating clock delays from ionospheric effects, even under mediocre to poor ionospheric conditions encountered near solar maximum.<i>Methods<i/>. The approach employs a key technique: we modelled our likelihood space using the circular Gaussian distribution (von Mises random variable) rather than non-circular distributions that suffer from 2<i>π<i/> phase ambiguities. This ensures that noisier data are weighted less heavily than cleaner data during the fitting process.<i>Results<i/>. The method reliably separates clock delays and ionospheric terms that vary smoothly in time whilst providing a good fit to the data. A comparison with the clock-ionosphere separation approach used in standard LOFAR data processing shows that our technique achieves significant improvements. In contrast to the old algorithm, which often fails to return reliable results below 100 MHz even under good ionospheric conditions, the new algorithm consistently provides reliable solutions across a wider range of conditions.<i>Conclusions<i/>. This new algorithm represents a significant advance for large-scale surveys, offering a more dependable way to study ionospheric effects and furthering research in ionospheric science and low-frequency radio astronomy.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"123 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202556263","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Low-frequency radio observations are heavily impacted by the ionosphere, where dispersive delays can outpace even instrumental clock offsets, posing a serious calibration challenge. Especially below 100 MHz, phase unwrapping difficulties and higher-order dispersion effects can complicate the separation of ionospheric and clock delays.Aims. We address this challenge by introducing a method for reliably separating clock delays from ionospheric effects, even under mediocre to poor ionospheric conditions encountered near solar maximum.Methods. The approach employs a key technique: we modelled our likelihood space using the circular Gaussian distribution (von Mises random variable) rather than non-circular distributions that suffer from 2π phase ambiguities. This ensures that noisier data are weighted less heavily than cleaner data during the fitting process.Results. The method reliably separates clock delays and ionospheric terms that vary smoothly in time whilst providing a good fit to the data. A comparison with the clock-ionosphere separation approach used in standard LOFAR data processing shows that our technique achieves significant improvements. In contrast to the old algorithm, which often fails to return reliable results below 100 MHz even under good ionospheric conditions, the new algorithm consistently provides reliable solutions across a wider range of conditions.Conclusions. This new algorithm represents a significant advance for large-scale surveys, offering a more dependable way to study ionospheric effects and furthering research in ionospheric science and low-frequency radio astronomy.
射电天文学中从电离层效应中分离时钟延迟的改进算法
上下文。低频无线电观测受到电离层的严重影响,电离层的色散延迟甚至可以超过仪器时钟偏移,这给校准带来了严重的挑战。特别是在100mhz以下,相位展开困难和高阶色散效应会使电离层和时钟延迟的分离复杂化。我们通过引入一种可靠地将时钟延迟与电离层效应分离的方法来解决这一挑战,即使在太阳极大期附近遇到的电离层条件一般或较差的情况下也是如此。该方法采用了一项关键技术:我们使用圆形高斯分布(von Mises随机变量)而不是遭受2π相位模糊的非圆形分布来建模似然空间。这确保了在拟合过程中,噪声数据的权重低于干净数据。该方法可靠地分离了时钟延迟和随时间平稳变化的电离层项,同时提供了良好的数据拟合。与标准LOFAR数据处理中使用的时钟-电离层分离方法的比较表明,我们的技术取得了显著的改进。旧算法即使在良好的电离层条件下,也经常不能在100 MHz以下返回可靠的结果,与之相反,新算法在更广泛的条件范围内始终提供可靠的解决方案。这一新算法代表了大规模观测的重大进步,为研究电离层效应提供了更可靠的方法,并进一步推动了电离层科学和低频射电天文学的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信