Stiffness degradation analysis of recycled aggregate concrete beam on Kerr-type foundation: Force-based approach

IF 3.9 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Suchart Limkatanyu, Worathep Sae-Long, Nattapong Damrongwiriyanupap, Piti Sukontasukkul, Griengsak Kaewkulchai, Hamid M Sedighi, Hexin Zhang
{"title":"Stiffness degradation analysis of recycled aggregate concrete beam on Kerr-type foundation: Force-based approach","authors":"Suchart Limkatanyu, Worathep Sae-Long, Nattapong Damrongwiriyanupap, Piti Sukontasukkul, Griengsak Kaewkulchai, Hamid M Sedighi, Hexin Zhang","doi":"10.1177/10567895251380244","DOIUrl":null,"url":null,"abstract":"This study proposes a new beam–foundation model for analyzing the static behavior of recycled aggregate concrete (RAC) beam resting on Kerr-type foundations. The novelty of the approach lies in the integration of three distinct damage models—the Voigt parallel model, the Reuss serial model, and the generalized self-consistent model—into a force-based framework. These models are employed to capture stiffness degradation in RAC beams under isotropic and homogeneous conditions, addressing the need for more realistic damage representation in sustainable concrete structures. The Kerr-type foundation model accounts for interaction between the beam and its underlying foundation, while the Euler–Bernoulli beam theory governs the beam's deformation behavior under small displacements. The governing equations are formulated using the virtual force principle. Through a series of numerical simulations, the study investigates how damage mechanisms and system parameters influence the bending response of the RAC beam–foundation system. The results demonstrate that both the type of damage model and foundation characteristics significantly affect the structural stiffness, leading to either softening or stiffening responses.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"23 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895251380244","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a new beam–foundation model for analyzing the static behavior of recycled aggregate concrete (RAC) beam resting on Kerr-type foundations. The novelty of the approach lies in the integration of three distinct damage models—the Voigt parallel model, the Reuss serial model, and the generalized self-consistent model—into a force-based framework. These models are employed to capture stiffness degradation in RAC beams under isotropic and homogeneous conditions, addressing the need for more realistic damage representation in sustainable concrete structures. The Kerr-type foundation model accounts for interaction between the beam and its underlying foundation, while the Euler–Bernoulli beam theory governs the beam's deformation behavior under small displacements. The governing equations are formulated using the virtual force principle. Through a series of numerical simulations, the study investigates how damage mechanisms and system parameters influence the bending response of the RAC beam–foundation system. The results demonstrate that both the type of damage model and foundation characteristics significantly affect the structural stiffness, leading to either softening or stiffening responses.
kerr型基础上再生骨料混凝土梁刚度退化分析:基于力的方法
本文提出了一种新的梁-基础模型,用于分析克尔型基础上再生骨料混凝土梁的静力性能。该方法的新颖之处在于将三种不同的损伤模型——Voigt并行模型、Reuss串行模型和广义自洽模型——整合到一个基于力的框架中。这些模型用于捕捉各向同性和均匀条件下RAC梁的刚度退化,解决可持续混凝土结构中更真实的损伤表示需求。kerr型基础模型考虑了梁与下卧基础的相互作用,而Euler-Bernoulli梁理论控制了梁在小位移下的变形行为。利用虚力原理建立了控制方程。通过一系列的数值模拟,研究了损伤机制和系统参数对RAC梁-基础体系弯曲响应的影响。结果表明,损伤模型类型和基础特性对结构刚度均有显著影响,导致结构出现软化或加劲响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信