Vitamin B12 release through bacteriophage-mediated cell lysis of the marine bacterium Sulfitobacter sp. M39.

IF 6.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-08-29 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf136
Sabiha Sultana, Stefan Bruns, Armando Pacheco-Valenciana, Maliheh Mehrshad, Heinz Wilkes, Meinhard Simon, Sarahi Garcia, Gerrit Wienhausen
{"title":"Vitamin B<sub>12</sub> release through bacteriophage-mediated cell lysis of the marine bacterium <i>Sulfitobacter</i> sp. M39.","authors":"Sabiha Sultana, Stefan Bruns, Armando Pacheco-Valenciana, Maliheh Mehrshad, Heinz Wilkes, Meinhard Simon, Sarahi Garcia, Gerrit Wienhausen","doi":"10.1093/ismeco/ycaf136","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin B<sub>12</sub> (B<sub>12</sub>) is an essential cofactor for vital metabolic processes in both prokaryotes and eukaryotes. <i>De novo</i> B<sub>12</sub> biosynthesis is exclusively carried out by a modicum of prokaryotes, although being required by most organisms. Recently, it has been demonstrated that not all B<sub>12</sub>-prototrophic bacteria voluntarily share this vital cofactor and, therefore, are termed B<sub>12</sub>-retainers. Consequently, low biosynthesis potential and limited voluntary release lead to a large discrepancy between availability and demand for B<sub>12</sub> in the ocean, indicating that release of B<sub>12</sub> may be an important control. Hence, in this study, we examined a specific release process, cell lysis after phage infection. We isolated bacteriophages specific for the B<sub>12</sub>-prototrophic, yet B<sub>12</sub>-retainer bacterium <i>Sulfitobacter</i> sp. M39. The addition of the bacteriophages to a <i>Sulfitobacter</i> sp. M39 mono-culture led to a significant increase in virus-like particles, reduced bacterial growth, and quantifiable extracellular dissolved B<sub>12</sub>. When introducing bacteriophages to a co-culture comprising the host bacterium and the B<sub>12</sub>-auxotrophic diatom <i>Thalassiosira pseudonana</i>, we observed rapid response in the form of microalgal growth. Our results indicate that B<sub>12</sub> is released as a result of bacteriophage-mediated cell lysis of <i>Sulfitobacter</i> sp. M39, enabling the growth of <i>T. pseudonana</i> in co-culture and possibly other microbes in nature. Therefore, we propose that bacteriophage-mediated cell lysis is a key mechanism for the release of essential metabolites, including vitamins, and given the estimated bacteriophage infection rates in the ocean, it plays a crucial role in the B-vitamin cycle in the marine environment.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf136"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vitamin B12 (B12) is an essential cofactor for vital metabolic processes in both prokaryotes and eukaryotes. De novo B12 biosynthesis is exclusively carried out by a modicum of prokaryotes, although being required by most organisms. Recently, it has been demonstrated that not all B12-prototrophic bacteria voluntarily share this vital cofactor and, therefore, are termed B12-retainers. Consequently, low biosynthesis potential and limited voluntary release lead to a large discrepancy between availability and demand for B12 in the ocean, indicating that release of B12 may be an important control. Hence, in this study, we examined a specific release process, cell lysis after phage infection. We isolated bacteriophages specific for the B12-prototrophic, yet B12-retainer bacterium Sulfitobacter sp. M39. The addition of the bacteriophages to a Sulfitobacter sp. M39 mono-culture led to a significant increase in virus-like particles, reduced bacterial growth, and quantifiable extracellular dissolved B12. When introducing bacteriophages to a co-culture comprising the host bacterium and the B12-auxotrophic diatom Thalassiosira pseudonana, we observed rapid response in the form of microalgal growth. Our results indicate that B12 is released as a result of bacteriophage-mediated cell lysis of Sulfitobacter sp. M39, enabling the growth of T. pseudonana in co-culture and possibly other microbes in nature. Therefore, we propose that bacteriophage-mediated cell lysis is a key mechanism for the release of essential metabolites, including vitamins, and given the estimated bacteriophage infection rates in the ocean, it plays a crucial role in the B-vitamin cycle in the marine environment.

Abstract Image

Abstract Image

Abstract Image

海洋亚硫酸盐杆菌M39噬菌体介导的细胞裂解释放维生素B12。
维生素B12 (B12)是原核生物和真核生物重要代谢过程中必不可少的辅助因子。从头合成B12仅由少数原核生物进行,尽管大多数生物都需要它。最近,研究表明,并非所有的b12原生营养细菌都自愿共享这种重要的辅因子,因此,它们被称为b12保留体。因此,低生物合成潜力和有限的自愿释放导致海洋中B12的供应和需求之间存在很大差异,表明B12的释放可能是一个重要的控制因素。因此,在本研究中,我们研究了噬菌体感染后的特定释放过程——细胞裂解。我们分离出了b12原生营养,但b12保留细菌亚硫酸盐杆菌sp. M39的噬菌体。将噬菌体添加到亚硫酸盐杆菌M39单一培养物中,导致病毒样颗粒显著增加,细菌生长减少,可量化的细胞外溶解B12。当将噬菌体引入由宿主细菌和b12营养不良硅藻藻组成的共培养时,我们观察到微藻生长的快速反应。我们的研究结果表明,B12是由于噬菌体介导的亚硫酸盐杆菌M39的细胞裂解而释放的,使假单胞菌在共培养中生长,也可能使自然界中的其他微生物生长。因此,我们提出噬菌体介导的细胞裂解是释放必需代谢物(包括维生素)的关键机制,并且考虑到海洋中估计的噬菌体感染率,它在海洋环境中b族维生素循环中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信