Targeting the glymphatic system: Aβ accumulation and phototherapy strategies across different stages of Alzheimer's disease.

IF 15.2 1区 医学 Q1 NEUROSCIENCES
Danrui Zhao, Junting Wang, Yirui Zhu, Hao Zhang, Chenkang Ni, Zhuowen Zhao, Jingyu Dai, Rongqiao He, Guangzhi Liu, Cheng Gan, Shouzi Zhang, Zhiqian Tong
{"title":"Targeting the glymphatic system: Aβ accumulation and phototherapy strategies across different stages of Alzheimer's disease.","authors":"Danrui Zhao, Junting Wang, Yirui Zhu, Hao Zhang, Chenkang Ni, Zhuowen Zhao, Jingyu Dai, Rongqiao He, Guangzhi Liu, Cheng Gan, Shouzi Zhang, Zhiqian Tong","doi":"10.1186/s40035-025-00510-8","DOIUrl":null,"url":null,"abstract":"<p><p>The glymphatic system serves as the brain's clearance system. It deteriorates with age and is a significant contributor to the onset and progression of Alzheimer's disease (AD). Modulating cerebrospinal fluid (CSF)-based clearance and targeting key components of the glymphatic system, such as aquaporin-4, can enhance amyloid-beta (Aβ) clearance. Light therapy is emerging as a potential AD treatment approach, which involves the use of visible and near-infrared light at specific wavelengths (630/680/808/850/1070 nm), photosensitive proteins, and sensory stimulation at particular frequencies (e.g., 40 Hz). This phototherapy strategy can broadly influence the intracerebral fluid dynamics, including cerebral blood flow, CSF, and interstitial fluid (ISF), as well as structures related to the glymphatic system, such as vascular endothelial cells, glial cells, and neurons. Additionally, it may directly or indirectly inhibit Aβ accumulation by modulating endogenous small molecules, thereby improving cognitive function. Our previous research demonstrated that 630-nm red light can inhibit Aβ cross-linking by clearing endogenous formaldehyde and promoting ISF drainage. Notably, Aβ accumulation exhibits distinct characteristics at different phases of AD, accompanied by varying features of glymphatic system impairment. In the early stages, deep brain regions are significantly affected, whereas in the late stages, accumulation primarily occurs in the paracentral, precentral, and postcentral cortices. Owing to the limited penetration depth of light, this may pose a challenge to the clinical efficacy of phototherapy. Therefore, different stages of AD may require tailored phototherapeutic strategies. Meanwhile, it is important to acknowledge the ongoing controversies associated with lymphovenous anastomosis, a procedure that targets the glymphatic system. Therefore, this article reviews the characteristics of glymphatic system impairment across various AD stages and the mechanisms by which effective phototherapies modulate the glymphatic system. Potential phototherapeutic strategies corresponding to different stages of Aβ accumulation are also proposed.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"14 1","pages":"49"},"PeriodicalIF":15.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12459067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-025-00510-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The glymphatic system serves as the brain's clearance system. It deteriorates with age and is a significant contributor to the onset and progression of Alzheimer's disease (AD). Modulating cerebrospinal fluid (CSF)-based clearance and targeting key components of the glymphatic system, such as aquaporin-4, can enhance amyloid-beta (Aβ) clearance. Light therapy is emerging as a potential AD treatment approach, which involves the use of visible and near-infrared light at specific wavelengths (630/680/808/850/1070 nm), photosensitive proteins, and sensory stimulation at particular frequencies (e.g., 40 Hz). This phototherapy strategy can broadly influence the intracerebral fluid dynamics, including cerebral blood flow, CSF, and interstitial fluid (ISF), as well as structures related to the glymphatic system, such as vascular endothelial cells, glial cells, and neurons. Additionally, it may directly or indirectly inhibit Aβ accumulation by modulating endogenous small molecules, thereby improving cognitive function. Our previous research demonstrated that 630-nm red light can inhibit Aβ cross-linking by clearing endogenous formaldehyde and promoting ISF drainage. Notably, Aβ accumulation exhibits distinct characteristics at different phases of AD, accompanied by varying features of glymphatic system impairment. In the early stages, deep brain regions are significantly affected, whereas in the late stages, accumulation primarily occurs in the paracentral, precentral, and postcentral cortices. Owing to the limited penetration depth of light, this may pose a challenge to the clinical efficacy of phototherapy. Therefore, different stages of AD may require tailored phototherapeutic strategies. Meanwhile, it is important to acknowledge the ongoing controversies associated with lymphovenous anastomosis, a procedure that targets the glymphatic system. Therefore, this article reviews the characteristics of glymphatic system impairment across various AD stages and the mechanisms by which effective phototherapies modulate the glymphatic system. Potential phototherapeutic strategies corresponding to different stages of Aβ accumulation are also proposed.

Abstract Image

Abstract Image

Abstract Image

靶向淋巴系统:阿尔茨海默病不同阶段的Aβ积累和光疗策略
淋巴系统是大脑的清除系统。它随着年龄的增长而恶化,是阿尔茨海默病(AD)发病和发展的重要因素。调节基于脑脊液(CSF)的清除和靶向淋巴系统的关键成分,如水通道蛋白-4,可以增强淀粉样蛋白- β (Aβ)的清除。光疗正在成为一种潜在的阿尔茨海默病治疗方法,包括使用特定波长(630/680/808/850/1070 nm)的可见光和近红外光、光敏蛋白和特定频率(例如40 Hz)的感官刺激。这种光疗策略可以广泛影响脑内流体动力学,包括脑血流、脑脊液和间质液(ISF),以及与淋巴系统相关的结构,如血管内皮细胞、胶质细胞和神经元。此外,它可能通过调节内源性小分子直接或间接抑制Aβ积累,从而改善认知功能。我们之前的研究表明,630nm红光可以通过清除内源性甲醛和促进ISF排水来抑制Aβ交联。值得注意的是,Aβ积累在AD的不同阶段表现出不同的特征,并伴有不同的淋巴系统损伤特征。在早期阶段,脑深部区域受到显著影响,而在晚期阶段,积累主要发生在中央旁、中央前和中央后皮层。由于光的穿透深度有限,这可能对光疗的临床疗效构成挑战。因此,不同阶段的AD可能需要量身定制的光疗策略。同时,重要的是要承认与淋巴静脉吻合相关的持续争议,这是一种针对淋巴系统的手术。因此,本文综述了AD不同阶段淋巴系统损伤的特点以及有效的光疗法调节淋巴系统的机制。针对不同阶段的Aβ积累,提出了潜在的光疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Neurodegeneration
Translational Neurodegeneration Neuroscience-Cognitive Neuroscience
CiteScore
19.50
自引率
0.80%
发文量
44
审稿时长
10 weeks
期刊介绍: Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信