Machine learning and data-driven inverse modeling of metabolomics unveil key processes of active aging.

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Jiahang Li, Martin Brenner, Iro Pierides, Barbara Wessner, Bernhard Franzke, Eva-Maria Strasser, Steffen Waldherr, Karl-Heinz Wagner, Wolfram Weckwerth
{"title":"Machine learning and data-driven inverse modeling of metabolomics unveil key processes of active aging.","authors":"Jiahang Li, Martin Brenner, Iro Pierides, Barbara Wessner, Bernhard Franzke, Eva-Maria Strasser, Steffen Waldherr, Karl-Heinz Wagner, Wolfram Weckwerth","doi":"10.1038/s41540-025-00580-4","DOIUrl":null,"url":null,"abstract":"<p><p>Physical inactivity and low fitness have become global health concerns. Metabolomics, as an integrative approach, may link fitness to molecular changes. In this study, we analyzed blood metabolomes from elderly individuals under different treatments. By defining two fitness groups and their corresponding metabolite profiles, we applied several machine learning classifiers to identify key metabolite biomarkers. Aspartate consistently emerged as a dominant fitness marker. We further defined a body activity index (BAI) and analyzed two cohorts with high and low BAI using COVRECON, a novel method for metabolic network interaction analysis. COVRECON identifies causal molecular dynamics in multiomics data. Aspartate-amino-transferase (AST) was among the dominant processes distinguishing the groups. Routine blood tests confirmed significant differences in AST and ALT. Aspartate is also a known biomarker in dementia, related to physical fitness. In summary, we combine machine learning and COVRECON to identify metabolic biomarkers and molecular dynamics supporting active aging.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"103"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460594/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00580-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Physical inactivity and low fitness have become global health concerns. Metabolomics, as an integrative approach, may link fitness to molecular changes. In this study, we analyzed blood metabolomes from elderly individuals under different treatments. By defining two fitness groups and their corresponding metabolite profiles, we applied several machine learning classifiers to identify key metabolite biomarkers. Aspartate consistently emerged as a dominant fitness marker. We further defined a body activity index (BAI) and analyzed two cohorts with high and low BAI using COVRECON, a novel method for metabolic network interaction analysis. COVRECON identifies causal molecular dynamics in multiomics data. Aspartate-amino-transferase (AST) was among the dominant processes distinguishing the groups. Routine blood tests confirmed significant differences in AST and ALT. Aspartate is also a known biomarker in dementia, related to physical fitness. In summary, we combine machine learning and COVRECON to identify metabolic biomarkers and molecular dynamics supporting active aging.

机器学习和数据驱动的代谢组学逆建模揭示了活跃衰老的关键过程。
缺乏身体活动和低健康水平已成为全球健康问题。代谢组学作为一种综合方法,可能将适应度与分子变化联系起来。在这项研究中,我们分析了不同治疗下老年人的血液代谢组。通过定义两个健康组及其相应的代谢物谱,我们应用了几个机器学习分类器来识别关键的代谢物生物标志物。天冬氨酸一直是主要的适应度标记。我们进一步定义了身体活动指数(BAI),并使用一种新的代谢网络相互作用分析方法COVRECON对高和低BAI的两个队列进行了分析。COVRECON在多组学数据中识别因果分子动力学。天冬氨酸氨基转移酶(AST)是区分这两组的主要过程之一。常规血液检查证实了AST和ALT的显著差异。天冬氨酸也是痴呆症的已知生物标志物,与身体健康有关。总之,我们结合机器学习和COVRECON来识别支持主动衰老的代谢生物标志物和分子动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信