Zhaohai Pan, Heng Ge, Pan Jiang, Dan Shi, Zihui Yang, Xin Zhang, Jie Huang, Chao Liang, Jun Lu, Qi Xie, Qiusheng Zheng, Defang Li
{"title":"Inhibiting Cyclin-Dependent Kinase 13-Mediated Nuclear Ubiquitous Casein Kinase and Cyclin-Dependent Kinase Substrate 1 Phosphorylation Facilitates Oxidative Stress-Induced Apoptosis in Melanoma.","authors":"Zhaohai Pan, Heng Ge, Pan Jiang, Dan Shi, Zihui Yang, Xin Zhang, Jie Huang, Chao Liang, Jun Lu, Qi Xie, Qiusheng Zheng, Defang Li","doi":"10.1002/mc.70040","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular responses after oxidative stress-induced deoxyribonucleic acid (DNA) damage (e.g., DNA double-strand break) control tumor cell proliferation, senescence, and apoptosis. The nuclear ubiquitous casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) ensures replication feasibility by modulating double-strand break repair necessary to regulate tumor cell proliferation. However, the regulatory mechanism of NUCKS1 in oxidative stress-induced melanoma cell apoptosis is not well characterized. In this study, we reported reduced phosphorylation of NUCKS1 during oxidative stress-mediated melanoma A375 and A875 cell apoptosis, and silencing of NUCKS1 obviously promoted A375 and A875 cell apoptosis. Mechanistically, cyclin-dependent kinase 13 (CDK13) was identified as a major upstream kinase to phosphorylate NUCKS1 and downregulated via ataxia telangiectasia mutated (ATM)/checkpoint kinase 2 (Chk2)/cell division cycle 25C (Cdc25C) axis during the process of oxidative stress-induced apoptosis. Moreover, we found that p-NUCKS1 could bind to tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein Zeta (YWHAZ) and subsequently regulate the level of BCL2-associated X (Bax), thereby leading to melanoma A375 and A875 cell apoptosis. Furthermore, we found that p-NUCKS1 was highly expressed in tumor specimens from melanoma patients, and silencing of NUCKS1 inhibited tumor growth in melanoma A375 and A875-bearing mouse models. Therefore, p-NUCKS1 could act as a potential target for melanoma treatment by mediating oxidative stress-induced apoptosis.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.70040","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular responses after oxidative stress-induced deoxyribonucleic acid (DNA) damage (e.g., DNA double-strand break) control tumor cell proliferation, senescence, and apoptosis. The nuclear ubiquitous casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) ensures replication feasibility by modulating double-strand break repair necessary to regulate tumor cell proliferation. However, the regulatory mechanism of NUCKS1 in oxidative stress-induced melanoma cell apoptosis is not well characterized. In this study, we reported reduced phosphorylation of NUCKS1 during oxidative stress-mediated melanoma A375 and A875 cell apoptosis, and silencing of NUCKS1 obviously promoted A375 and A875 cell apoptosis. Mechanistically, cyclin-dependent kinase 13 (CDK13) was identified as a major upstream kinase to phosphorylate NUCKS1 and downregulated via ataxia telangiectasia mutated (ATM)/checkpoint kinase 2 (Chk2)/cell division cycle 25C (Cdc25C) axis during the process of oxidative stress-induced apoptosis. Moreover, we found that p-NUCKS1 could bind to tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein Zeta (YWHAZ) and subsequently regulate the level of BCL2-associated X (Bax), thereby leading to melanoma A375 and A875 cell apoptosis. Furthermore, we found that p-NUCKS1 was highly expressed in tumor specimens from melanoma patients, and silencing of NUCKS1 inhibited tumor growth in melanoma A375 and A875-bearing mouse models. Therefore, p-NUCKS1 could act as a potential target for melanoma treatment by mediating oxidative stress-induced apoptosis.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.