Stress-induced mitochondrial fragmentation in endothelial cells disrupts blood-retinal barrier integrity causing neurodegeneration.

IF 12 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jorge L Cueva Vargas, Nicolas Belforte, Isaac A Vidal-Paredes, Florence Dotigny, Christine Vande Velde, Heberto Quintero, Adriana Di Polo
{"title":"Stress-induced mitochondrial fragmentation in endothelial cells disrupts blood-retinal barrier integrity causing neurodegeneration.","authors":"Jorge L Cueva Vargas, Nicolas Belforte, Isaac A Vidal-Paredes, Florence Dotigny, Christine Vande Velde, Heberto Quintero, Adriana Di Polo","doi":"10.1016/j.ymthe.2025.09.037","DOIUrl":null,"url":null,"abstract":"<p><p>Increased vascular leakage and endothelial cell (EC) dysfunction are major features of neurodegenerative diseases. Here, we investigated the mechanisms leading to EC dysregulation and asked whether altered mitochondrial dynamics in ECs impinge on vascular barrier integrity and neurodegeneration. We show that ocular hypertension, a major risk factor for developing glaucoma, induced mitochondrial fragmentation in retinal capillary ECs, accompanied by increased oxidative stress and ultrastructural defects. Analysis of EC mitochondrial components revealed overactivation of dynamin-related protein 1 (DRP1), a central regulator of mitochondrial fission, during glaucomatous damage. Pharmacological DRP1 inhibition or EC-specific in vivo gene delivery of a dominant-negative DRP1 mutant was sufficient to rescue mitochondrial volume, reduce vascular leakage, and increase expression of the tight junction claudin-5 (CLDN5). We further demonstrate that EC-targeted CLDN5 gene augmentation restored blood-retinal barrier integrity, promoted neuronal survival, and improved light-evoked visual behaviors in glaucomatous mice. Our findings reveal that preserving mitochondrial homeostasis and EC function are valuable strategies to enhance neuroprotection and improve vision in glaucoma.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.09.037","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Increased vascular leakage and endothelial cell (EC) dysfunction are major features of neurodegenerative diseases. Here, we investigated the mechanisms leading to EC dysregulation and asked whether altered mitochondrial dynamics in ECs impinge on vascular barrier integrity and neurodegeneration. We show that ocular hypertension, a major risk factor for developing glaucoma, induced mitochondrial fragmentation in retinal capillary ECs, accompanied by increased oxidative stress and ultrastructural defects. Analysis of EC mitochondrial components revealed overactivation of dynamin-related protein 1 (DRP1), a central regulator of mitochondrial fission, during glaucomatous damage. Pharmacological DRP1 inhibition or EC-specific in vivo gene delivery of a dominant-negative DRP1 mutant was sufficient to rescue mitochondrial volume, reduce vascular leakage, and increase expression of the tight junction claudin-5 (CLDN5). We further demonstrate that EC-targeted CLDN5 gene augmentation restored blood-retinal barrier integrity, promoted neuronal survival, and improved light-evoked visual behaviors in glaucomatous mice. Our findings reveal that preserving mitochondrial homeostasis and EC function are valuable strategies to enhance neuroprotection and improve vision in glaucoma.

应激诱导的内皮细胞线粒体断裂破坏血液-视网膜屏障的完整性,导致神经变性。
血管渗漏增加和内皮细胞(EC)功能障碍是神经退行性疾病的主要特征。在这里,我们研究了导致EC失调的机制,并询问EC中线粒体动力学的改变是否会影响血管屏障的完整性和神经变性。我们发现,高眼压是青光眼的一个主要危险因素,可诱导视网膜毛细血管内皮细胞线粒体断裂,并伴有氧化应激增加和超微结构缺陷。对EC线粒体成分的分析显示,在青光眼损伤期间,动力蛋白相关蛋白1 (DRP1)过度激活,DRP1是线粒体分裂的主要调节因子。药理抑制DRP1或ec特异性体内基因传递显性DRP1阴性突变体足以挽救线粒体体积,减少血管渗漏,并增加紧密连接CLDN5 (CLDN5)的表达。我们进一步证明,ec靶向CLDN5基因增强恢复了青光眼小鼠血液-视网膜屏障的完整性,促进了神经元的存活,并改善了光诱发的视觉行为。我们的研究结果表明,保持线粒体稳态和EC功能是增强青光眼神经保护和改善视力的有价值的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信