MRdb: a comprehensive database of univariate and multivariate Mendelian randomization with large-scale GWAS summary data.

IF 3.6 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Qian Liu, Yujie Zhang, Houxing Li, Jiatong Li, Mengyu Xin, Rui Sun, Yifan Dai, Xinxin Shan, Yuting He, Borui Xu, Shangwei Ning, Peng Wang, Qiuyan Guo
{"title":"MRdb: a comprehensive database of univariate and multivariate Mendelian randomization with large-scale GWAS summary data.","authors":"Qian Liu, Yujie Zhang, Houxing Li, Jiatong Li, Mengyu Xin, Rui Sun, Yifan Dai, Xinxin Shan, Yuting He, Borui Xu, Shangwei Ning, Peng Wang, Qiuyan Guo","doi":"10.1093/database/baaf054","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements highlight the importance of large-scale causal inference in elucidating disease mechanisms and guiding public health strategies. Mendelian randomization (MR) has become a cornerstone method for identifying causal relationships by leveraging genetic variants as instrumental variables. However, existing tools lack flexibility for multivariable analyses and fail to integrate diverse datasets effectively. To address these challenges, we introduce MRdb, a comprehensive database designed for conducting both univariable and multivariable MR analyses. MRdb encompasses 12 distinct categories of exposure data, including but not limited to 19 126 expression quantitative trait loci genes, 4907 plasma proteins, and 1400 plasma metabolites. Additionally, it integrates 48 507 disease outcomes sourced from FinnGen R10 and the IEU Open GWAS Project. MRdb offers robust data preprocessing features, including handling missing statistics, harmonizing datasets, and selecting instrumental variables to ensure high-quality analyses. Collectively, MRdb bridges the gaps in existing tools by integrating diverse datasets with user-friendly functionalities, empowering researchers to explore complex causal mechanisms.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2025 ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baaf054","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements highlight the importance of large-scale causal inference in elucidating disease mechanisms and guiding public health strategies. Mendelian randomization (MR) has become a cornerstone method for identifying causal relationships by leveraging genetic variants as instrumental variables. However, existing tools lack flexibility for multivariable analyses and fail to integrate diverse datasets effectively. To address these challenges, we introduce MRdb, a comprehensive database designed for conducting both univariable and multivariable MR analyses. MRdb encompasses 12 distinct categories of exposure data, including but not limited to 19 126 expression quantitative trait loci genes, 4907 plasma proteins, and 1400 plasma metabolites. Additionally, it integrates 48 507 disease outcomes sourced from FinnGen R10 and the IEU Open GWAS Project. MRdb offers robust data preprocessing features, including handling missing statistics, harmonizing datasets, and selecting instrumental variables to ensure high-quality analyses. Collectively, MRdb bridges the gaps in existing tools by integrating diverse datasets with user-friendly functionalities, empowering researchers to explore complex causal mechanisms.

Abstract Image

Abstract Image

MRdb:包含大规模GWAS汇总数据的单变量和多变量孟德尔随机化的综合数据库。
最近的进展突出了大规模因果推理在阐明疾病机制和指导公共卫生战略方面的重要性。孟德尔随机化(MR)已经成为通过利用遗传变异作为工具变量来识别因果关系的基础方法。然而,现有的工具缺乏多变量分析的灵活性,不能有效地整合不同的数据集。为了应对这些挑战,我们介绍了MRdb,这是一个旨在进行单变量和多变量MR分析的综合数据库。MRdb包含12个不同类别的暴露数据,包括但不限于19126个表达数量性状位点基因,4907个血浆蛋白和1400个血浆代谢物。此外,它还整合了来自FinnGen R10和IEU开放GWAS项目的48507种疾病结果。MRdb提供了强大的数据预处理功能,包括处理丢失的统计数据、协调数据集和选择工具变量以确保高质量的分析。总的来说,MRdb通过将不同的数据集与用户友好的功能集成在一起,弥补了现有工具的不足,使研究人员能够探索复杂的因果机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信