Rubén Muñoz-Tafalla, Isabel Cea-Rama, Fadia V Cervantes, Jose L Gonzalez-Alfonso, Francisco J Plou, Julio Polaina, Julia Sanz-Aparicio, Manuel Ferrer, Víctor Guallar, David Talens-Perales
{"title":"Embedding a feruloyl esterase active site into a thermophilic endoxylanase scaffold for the degradation of feruloylated xylans.","authors":"Rubén Muñoz-Tafalla, Isabel Cea-Rama, Fadia V Cervantes, Jose L Gonzalez-Alfonso, Francisco J Plou, Julio Polaina, Julia Sanz-Aparicio, Manuel Ferrer, Víctor Guallar, David Talens-Perales","doi":"10.1016/j.csbj.2025.09.003","DOIUrl":null,"url":null,"abstract":"<p><p>The structural complexity of xylan makes its complete degradation challenging. Strategies to improve its hydrolysis often requires enzyme cocktails with multiple specific activities or proteins harboring multiple catalytic domains. Here, we introduce a novel approach through the design of Xyn11<sub>m1</sub>, a multifunctional enzyme that combines endoxylanase and feruloyl esterase activities, two catalytic functions involved in the hydrolysis of feruloylated xylans. Using the PluriZyme concept, an artificial feruloyl esterase active site was engineered into the scaffold of a thermophilic glycoside hydrolase family 10 xylanase, Xyn11, from <i>Pseudothermotoga thermarum</i>. Computational design, guided by protein energy landscape exploration simulations, revealed a surface cavity that could accommodate feruloyl-L-arabinose and a xylopentaose (a 5-xylose xylan polymer) bearing a single feruloyl-L-arabinose substitution on the central xylose unit. This cavity was subsequently remodeled into a serine-histidine-aspartic/glutamic acid catalytic triad with feruloyl esterase activity. Molecular dynamics simulations confirmed the stability of the engineered active site. Xyn11<sub>m1</sub> was successfully produced, crystallized, and characterized, and its xylanase activity at 90 °C against oat spelt xylan was comparable to that of the wild-type enzyme (713 ± 4 vs. 600 ± 8 units/mg), and it also displayed feruloyl esterase activity against methyl ferulate (140 ± 5 units/mg), a capability lacking in Xyn11. Notably, Xyn11<sub>m1</sub> exhibited approximately 2.5-fold greater activity compared with Xyn11 (513 ± 27 vs. 222 ± 9 units/mg) against wheat bran xylan containing ferulic acid ester linked to arabinofuranosyl residues. This dual functionality enables efficient degradation of feruloylated xylans, highlighting the potential of PluriZymes to advance biomass deconstruction technologies.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3814-3823"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454871/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.09.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The structural complexity of xylan makes its complete degradation challenging. Strategies to improve its hydrolysis often requires enzyme cocktails with multiple specific activities or proteins harboring multiple catalytic domains. Here, we introduce a novel approach through the design of Xyn11m1, a multifunctional enzyme that combines endoxylanase and feruloyl esterase activities, two catalytic functions involved in the hydrolysis of feruloylated xylans. Using the PluriZyme concept, an artificial feruloyl esterase active site was engineered into the scaffold of a thermophilic glycoside hydrolase family 10 xylanase, Xyn11, from Pseudothermotoga thermarum. Computational design, guided by protein energy landscape exploration simulations, revealed a surface cavity that could accommodate feruloyl-L-arabinose and a xylopentaose (a 5-xylose xylan polymer) bearing a single feruloyl-L-arabinose substitution on the central xylose unit. This cavity was subsequently remodeled into a serine-histidine-aspartic/glutamic acid catalytic triad with feruloyl esterase activity. Molecular dynamics simulations confirmed the stability of the engineered active site. Xyn11m1 was successfully produced, crystallized, and characterized, and its xylanase activity at 90 °C against oat spelt xylan was comparable to that of the wild-type enzyme (713 ± 4 vs. 600 ± 8 units/mg), and it also displayed feruloyl esterase activity against methyl ferulate (140 ± 5 units/mg), a capability lacking in Xyn11. Notably, Xyn11m1 exhibited approximately 2.5-fold greater activity compared with Xyn11 (513 ± 27 vs. 222 ± 9 units/mg) against wheat bran xylan containing ferulic acid ester linked to arabinofuranosyl residues. This dual functionality enables efficient degradation of feruloylated xylans, highlighting the potential of PluriZymes to advance biomass deconstruction technologies.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology