{"title":"A Novel Combined Therapeutic Approach to Endometriosis: Exosomes Derived from Human Wharton's Jelly Mesenchymal Stem Cells and Etanercept.","authors":"Roya Mahdavi, Dian Dayer, Afshin Amari, Zorvan Jalili, Mehri Ghafourian, Maryam Farzaneh","doi":"10.2174/0115665240386032250914233540","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Endometriosis is a chronic disorder characterized by abnormal endometrial tissue growth. This study evaluates a novel combination immunomodulatory treatment involving etanercept (ETN) and exosomes derived from human Wharton's jelly mesenchymal stem cells (hWJMSC-Exo) as a promising alternative to conventional therapies for modulating inflammation in endometriosis.</p><p><strong>Methods: </strong>Endometrial stromal cells were isolated by enzymatic digestion of eutopic (EuESCs, N = 6) and ectopic (EESCs, N = 6) tissues of endometriosis patients and non-endometriotic controls (CESCs, N = 6). hWJMSC-Exo were confirmed by flow cytometry, SEM, and DLS tests. Cells were treated with varying concentrations of ETN (0-40 μg/ml), hWJMSC-Exo (0-15 μg/ml), and their combination (E+E). IC50 values were determined using the MTT assay at 24, 48, and 72 hours. Protein levels of TNF- α, VEGF-A, and IL-10, and gene expression of MMP-2, MMP-9, MCP-1, aromatase, TSLP, and TGF-β1 were measured using ELISA and RT-PCR, respectively.</p><p><strong>Results: </strong>The combination of ETN (10 μg/ml) and hWJMSC-Exo (10 μg/ml) at 24 and 48 hours, respectively, reduced protein expression of TNF-α, VEGF-A, and IL-10 in EESCs, EuESCs, and CESCs compared with untreated groups (P < 0.001). Additionally, E+E treatment significantly reduced mRNA expression of MMP-2, MMP-9, MCP-1, aromatase, TSLP, and TGF-β1 in all three groups compared to untreated groups.</p><p><strong>Discussion: </strong>This combination therapy improves inflammation, angiogenesis, tissue remodeling, and immune regulation in endometriosis. However, clinical validation and long-term safety require further in vivo studies with larger sample sizes.</p><p><strong>Conclusion: </strong>E+E treatment synergistically reduced key cytokines and enzymes in endometriosis. This approach is a promising means of regulating inflammation.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240386032250914233540","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Endometriosis is a chronic disorder characterized by abnormal endometrial tissue growth. This study evaluates a novel combination immunomodulatory treatment involving etanercept (ETN) and exosomes derived from human Wharton's jelly mesenchymal stem cells (hWJMSC-Exo) as a promising alternative to conventional therapies for modulating inflammation in endometriosis.
Methods: Endometrial stromal cells were isolated by enzymatic digestion of eutopic (EuESCs, N = 6) and ectopic (EESCs, N = 6) tissues of endometriosis patients and non-endometriotic controls (CESCs, N = 6). hWJMSC-Exo were confirmed by flow cytometry, SEM, and DLS tests. Cells were treated with varying concentrations of ETN (0-40 μg/ml), hWJMSC-Exo (0-15 μg/ml), and their combination (E+E). IC50 values were determined using the MTT assay at 24, 48, and 72 hours. Protein levels of TNF- α, VEGF-A, and IL-10, and gene expression of MMP-2, MMP-9, MCP-1, aromatase, TSLP, and TGF-β1 were measured using ELISA and RT-PCR, respectively.
Results: The combination of ETN (10 μg/ml) and hWJMSC-Exo (10 μg/ml) at 24 and 48 hours, respectively, reduced protein expression of TNF-α, VEGF-A, and IL-10 in EESCs, EuESCs, and CESCs compared with untreated groups (P < 0.001). Additionally, E+E treatment significantly reduced mRNA expression of MMP-2, MMP-9, MCP-1, aromatase, TSLP, and TGF-β1 in all three groups compared to untreated groups.
Discussion: This combination therapy improves inflammation, angiogenesis, tissue remodeling, and immune regulation in endometriosis. However, clinical validation and long-term safety require further in vivo studies with larger sample sizes.
Conclusion: E+E treatment synergistically reduced key cytokines and enzymes in endometriosis. This approach is a promising means of regulating inflammation.
期刊介绍:
Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.