Dipanjan Karati, Sakuntala Gayen, Swarupananda Mukherjee, Souvik Roy
{"title":"An Explicative Review on Nanotechnology-based Drug Delivery Systems for Alleviating Oxidative Stress-driven Pathologies.","authors":"Dipanjan Karati, Sakuntala Gayen, Swarupananda Mukherjee, Souvik Roy","doi":"10.2174/0113892002389930250903070042","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Numerous chronic illnesses, including diabetes, cancer, cardiovascular dis-ease, and neurological disorders, are mostly caused by oxidative stress, which is defined as an imbal-ance between the body's antioxidant defenses and the generation of reactive oxygen species (ROS). The success of traditional treatments for oxidative stress has been limited because antioxidant medications are not well-absorbed, are quickly broken down, and do not target specific areas of the body.</p><p><strong>Methods: </strong>Drug delivery methods based on nanotechnology offer a viable solution to these issues by providing therapeutic molecules with improved release characteristics, enhanced bioavailability, and targeted capabilities. Recent developments in nanotechnology have enabled the creation of multipur-pose carriers that can simultaneously transmit genes for endogenous antioxidant enzymes and antioxi-dants.</p><p><strong>Results: </strong>This integration promotes a long-term healing response and addresses the immediate oxidative stress. Likewise, functionalizing nanocarriers with particular ligands improves localization to oxidative stress locations, including inflammatory tissues or tumor microenvironments, boosting therapeutic ef-ficacy. The potential of nanotherapeutics in reducing oxidative stress-driven diseases is examined in this article.</p><p><strong>Discussion: </strong>Nanotechnology-based drug delivery approaches offer a novel avenue for the treatment of several oxidative stress-induced diseases. These delivery systems are highly target-specific and have a longer duration of action. Still, more research is needed to address issues, such as safety margins, large-scale production, and approval of medicine use.</p><p><strong>Conclusion: </strong>We address several nanocarrier platforms, such as liposomes, polymeric nanoparticles, dendrimers, and metallic nanoparticles that have proven more effective in delivering therapeutic drugs and antioxidants to specific sites of oxidative damage. Furthermore, nanotherapeutics may enhance their therapeutic potential by protecting these bioactive substances from premature degradation and clearance.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002389930250903070042","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Numerous chronic illnesses, including diabetes, cancer, cardiovascular dis-ease, and neurological disorders, are mostly caused by oxidative stress, which is defined as an imbal-ance between the body's antioxidant defenses and the generation of reactive oxygen species (ROS). The success of traditional treatments for oxidative stress has been limited because antioxidant medications are not well-absorbed, are quickly broken down, and do not target specific areas of the body.
Methods: Drug delivery methods based on nanotechnology offer a viable solution to these issues by providing therapeutic molecules with improved release characteristics, enhanced bioavailability, and targeted capabilities. Recent developments in nanotechnology have enabled the creation of multipur-pose carriers that can simultaneously transmit genes for endogenous antioxidant enzymes and antioxi-dants.
Results: This integration promotes a long-term healing response and addresses the immediate oxidative stress. Likewise, functionalizing nanocarriers with particular ligands improves localization to oxidative stress locations, including inflammatory tissues or tumor microenvironments, boosting therapeutic ef-ficacy. The potential of nanotherapeutics in reducing oxidative stress-driven diseases is examined in this article.
Discussion: Nanotechnology-based drug delivery approaches offer a novel avenue for the treatment of several oxidative stress-induced diseases. These delivery systems are highly target-specific and have a longer duration of action. Still, more research is needed to address issues, such as safety margins, large-scale production, and approval of medicine use.
Conclusion: We address several nanocarrier platforms, such as liposomes, polymeric nanoparticles, dendrimers, and metallic nanoparticles that have proven more effective in delivering therapeutic drugs and antioxidants to specific sites of oxidative damage. Furthermore, nanotherapeutics may enhance their therapeutic potential by protecting these bioactive substances from premature degradation and clearance.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.