Bao Ngoc Huynh, Manish Kakar, Olga Zlygosteva, Inga Solgård Juvkam, Nina Edin, Oliver Tomic, Cecilia Marie Futsaether, Eirik Malinen
{"title":"CNN-based prediction using early post-radiotherapy MRI as a proxy for toxicity in the murine head and neck.","authors":"Bao Ngoc Huynh, Manish Kakar, Olga Zlygosteva, Inga Solgård Juvkam, Nina Edin, Oliver Tomic, Cecilia Marie Futsaether, Eirik Malinen","doi":"10.2340/1651-226X.2025.44020","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Radiotherapy (RT) of head and neck cancer can cause severe toxicities. Early identification of individuals at risk could enable personalized treatment. This study evaluated whether convolutional neural networks (CNNs) applied to Magnetic Resonance (MR) images acquired early after irradiation can predict radiation-induced tissue changes associated with toxicity in mice. Patient/material and methods: Twenty-nine C57BL/6JRj mice were included (irradiated: n = 14; control: n = 15). Irradiated mice received 65 Gy of fractionated RT to the oral cavity, swallowing muscles and salivary glands. T2-weighted MR images were acquired 3-5 days post-irradiation. CNN models (VGG, MobileNet, ResNet, EfficientNet) were trained to classify sagittal slices as irradiated or control (n = 586 slices). Predicted class probabilities were correlated with five toxicity endpoints assessed 8-105 days post-irradiation. Model explainability was assessed with VarGrad heatmaps, to verify that predictions relied on clinically relevant image regions.</p><p><strong>Results: </strong>The best-performing model (EfficientNet B3) achieved 83% slice-level accuracy (ACC) and correctly classified 28 of 29 mice. Higher predicted probabilities of the irradiated class were strongly associated with oral mucositis, dermatitis, reduced saliva production, late submandibular gland fibrosis and atrophy of salivary gland acinar cells. Explainability heatmaps confirmed that CNNs focused on irradiated regions.</p><p><strong>Interpretation: </strong>The high CNN classification ACC, the regions highlighted by the explainability analysis and the strong correlations between model predictions and toxicity suggest that CNNs, together with post-irradiation magnetic resonance imaging, may identify individuals at risk of developing toxicity.</p>","PeriodicalId":7110,"journal":{"name":"Acta Oncologica","volume":"64 ","pages":"1312-1320"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490106/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oncologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2340/1651-226X.2025.44020","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Radiotherapy (RT) of head and neck cancer can cause severe toxicities. Early identification of individuals at risk could enable personalized treatment. This study evaluated whether convolutional neural networks (CNNs) applied to Magnetic Resonance (MR) images acquired early after irradiation can predict radiation-induced tissue changes associated with toxicity in mice. Patient/material and methods: Twenty-nine C57BL/6JRj mice were included (irradiated: n = 14; control: n = 15). Irradiated mice received 65 Gy of fractionated RT to the oral cavity, swallowing muscles and salivary glands. T2-weighted MR images were acquired 3-5 days post-irradiation. CNN models (VGG, MobileNet, ResNet, EfficientNet) were trained to classify sagittal slices as irradiated or control (n = 586 slices). Predicted class probabilities were correlated with five toxicity endpoints assessed 8-105 days post-irradiation. Model explainability was assessed with VarGrad heatmaps, to verify that predictions relied on clinically relevant image regions.
Results: The best-performing model (EfficientNet B3) achieved 83% slice-level accuracy (ACC) and correctly classified 28 of 29 mice. Higher predicted probabilities of the irradiated class were strongly associated with oral mucositis, dermatitis, reduced saliva production, late submandibular gland fibrosis and atrophy of salivary gland acinar cells. Explainability heatmaps confirmed that CNNs focused on irradiated regions.
Interpretation: The high CNN classification ACC, the regions highlighted by the explainability analysis and the strong correlations between model predictions and toxicity suggest that CNNs, together with post-irradiation magnetic resonance imaging, may identify individuals at risk of developing toxicity.
期刊介绍:
Acta Oncologica is a journal for the clinical oncologist and accepts articles within all fields of clinical cancer research. Articles on tumour pathology, experimental oncology, radiobiology, cancer epidemiology and medical radio physics are also welcome, especially if they have a clinical aim or interest. Scientific articles on cancer nursing and psychological or social aspects of cancer are also welcomed. Extensive material may be published as Supplements, for which special conditions apply.