{"title":"Muscle Regeneration Can Be Rescued in a Telomerase Deficient Zebrafish Model of Ageing by MMP Inhibition.","authors":"Yue Yuan, Carlene Dyer, Robert D Knight","doi":"10.1111/acel.70238","DOIUrl":null,"url":null,"abstract":"<p><p>Ageing progressively impairs skeletal muscle regeneration, contributing to reduced mobility and quality of life. While the molecular changes underlying muscle ageing have been well characterised, their impact on muscle stem cell (muSC) behaviour during regeneration remains poorly understood. Here, we leverage telomerase-deficient tert mutant zebrafish larvae as an in vivo model of accelerated ageing to perform real-time analysis of muSC dynamics following muscle injury. We demonstrate that the ageing-like inflammatory environment in tert mutant disrupts muSC migration, impairs activation and proliferation, and compromises regenerative capacity. We further show that sustained inflammation, mediated by persistent macrophage presence and elevated matrix metalloproteinase (MMP) activity, limits muSC recruitment and migration efficiency. Pharmacological inhibition of MMP9/13 activity and genetic depletion of macrophages partially restore muSC migratory behaviour and regenerative outcomes. Notably, we demonstrate that muSC migration dynamics correlate with regenerative success, providing a functional readout for therapeutic screening. Our findings reveal zebrafish tert mutants offer a tractable system for dissecting age-associated changes to cell behaviour and for identifying rejuvenation interventions.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70238"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70238","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ageing progressively impairs skeletal muscle regeneration, contributing to reduced mobility and quality of life. While the molecular changes underlying muscle ageing have been well characterised, their impact on muscle stem cell (muSC) behaviour during regeneration remains poorly understood. Here, we leverage telomerase-deficient tert mutant zebrafish larvae as an in vivo model of accelerated ageing to perform real-time analysis of muSC dynamics following muscle injury. We demonstrate that the ageing-like inflammatory environment in tert mutant disrupts muSC migration, impairs activation and proliferation, and compromises regenerative capacity. We further show that sustained inflammation, mediated by persistent macrophage presence and elevated matrix metalloproteinase (MMP) activity, limits muSC recruitment and migration efficiency. Pharmacological inhibition of MMP9/13 activity and genetic depletion of macrophages partially restore muSC migratory behaviour and regenerative outcomes. Notably, we demonstrate that muSC migration dynamics correlate with regenerative success, providing a functional readout for therapeutic screening. Our findings reveal zebrafish tert mutants offer a tractable system for dissecting age-associated changes to cell behaviour and for identifying rejuvenation interventions.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.