Marilena Lemonari, Andreas Panayiotou, Theodoros Kyriakou, Nuria Pelechano, Yiorgos Chrysanthou, Andreas Aristidou, Panayiotis Charalambous
{"title":"MPACT: Mesoscopic Profiling and Abstraction of Crowd Trajectories","authors":"Marilena Lemonari, Andreas Panayiotou, Theodoros Kyriakou, Nuria Pelechano, Yiorgos Chrysanthou, Andreas Aristidou, Panayiotis Charalambous","doi":"10.1111/cgf.70156","DOIUrl":null,"url":null,"abstract":"<p>Simulating believable crowds for applications like movies or games is challenging due to the many components that comprise a realistic outcome. Users typically need to manually tune a large number of simulation parameters until they reach the desired results. We introduce <i>MPACT</i>, a framework that leverages image-based encoding to convert unlabelled crowd data into meaningful and controllable parameters for crowd generation. In essence, we train a parameter prediction network on a diverse set of synthetic data, which includes pairs of images and corresponding crowd profiles. The learned parameter space enables: (a) implicit crowd authoring and control, allowing users to define desired crowd scenarios using real-world trajectory data, and (b) crowd analysis, facilitating the identification of crowd behaviours in the input and the classification of unseen scenarios through operations within the latent space. We quantitatively and qualitatively evaluate our framework, comparing it against real-world data and selected baselines, while also conducting user studies with expert and novice users. Our experiments show that the generated crowds score high in terms of simulation believability, plausibility and crowd behaviour faithfulness.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70156","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70156","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Simulating believable crowds for applications like movies or games is challenging due to the many components that comprise a realistic outcome. Users typically need to manually tune a large number of simulation parameters until they reach the desired results. We introduce MPACT, a framework that leverages image-based encoding to convert unlabelled crowd data into meaningful and controllable parameters for crowd generation. In essence, we train a parameter prediction network on a diverse set of synthetic data, which includes pairs of images and corresponding crowd profiles. The learned parameter space enables: (a) implicit crowd authoring and control, allowing users to define desired crowd scenarios using real-world trajectory data, and (b) crowd analysis, facilitating the identification of crowd behaviours in the input and the classification of unseen scenarios through operations within the latent space. We quantitatively and qualitatively evaluate our framework, comparing it against real-world data and selected baselines, while also conducting user studies with expert and novice users. Our experiments show that the generated crowds score high in terms of simulation believability, plausibility and crowd behaviour faithfulness.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.