MPACT: Mesoscopic Profiling and Abstraction of Crowd Trajectories

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Marilena Lemonari, Andreas Panayiotou, Theodoros Kyriakou, Nuria Pelechano, Yiorgos Chrysanthou, Andreas Aristidou, Panayiotis Charalambous
{"title":"MPACT: Mesoscopic Profiling and Abstraction of Crowd Trajectories","authors":"Marilena Lemonari,&nbsp;Andreas Panayiotou,&nbsp;Theodoros Kyriakou,&nbsp;Nuria Pelechano,&nbsp;Yiorgos Chrysanthou,&nbsp;Andreas Aristidou,&nbsp;Panayiotis Charalambous","doi":"10.1111/cgf.70156","DOIUrl":null,"url":null,"abstract":"<p>Simulating believable crowds for applications like movies or games is challenging due to the many components that comprise a realistic outcome. Users typically need to manually tune a large number of simulation parameters until they reach the desired results. We introduce <i>MPACT</i>, a framework that leverages image-based encoding to convert unlabelled crowd data into meaningful and controllable parameters for crowd generation. In essence, we train a parameter prediction network on a diverse set of synthetic data, which includes pairs of images and corresponding crowd profiles. The learned parameter space enables: (a) implicit crowd authoring and control, allowing users to define desired crowd scenarios using real-world trajectory data, and (b) crowd analysis, facilitating the identification of crowd behaviours in the input and the classification of unseen scenarios through operations within the latent space. We quantitatively and qualitatively evaluate our framework, comparing it against real-world data and selected baselines, while also conducting user studies with expert and novice users. Our experiments show that the generated crowds score high in terms of simulation believability, plausibility and crowd behaviour faithfulness.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70156","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70156","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Simulating believable crowds for applications like movies or games is challenging due to the many components that comprise a realistic outcome. Users typically need to manually tune a large number of simulation parameters until they reach the desired results. We introduce MPACT, a framework that leverages image-based encoding to convert unlabelled crowd data into meaningful and controllable parameters for crowd generation. In essence, we train a parameter prediction network on a diverse set of synthetic data, which includes pairs of images and corresponding crowd profiles. The learned parameter space enables: (a) implicit crowd authoring and control, allowing users to define desired crowd scenarios using real-world trajectory data, and (b) crowd analysis, facilitating the identification of crowd behaviours in the input and the classification of unseen scenarios through operations within the latent space. We quantitatively and qualitatively evaluate our framework, comparing it against real-world data and selected baselines, while also conducting user studies with expert and novice users. Our experiments show that the generated crowds score high in terms of simulation believability, plausibility and crowd behaviour faithfulness.

Abstract Image

影响:人群轨迹的介观轮廓和抽象
为电影或游戏等应用程序模拟可信人群是具有挑战性的,因为包含许多组成现实结果的组件。用户通常需要手动调整大量模拟参数,直到达到所需的结果。我们介绍了MPACT,这是一个利用基于图像的编码将未标记的人群数据转换为有意义和可控的人群生成参数的框架。本质上,我们在一组不同的合成数据上训练一个参数预测网络,这些数据包括成对的图像和相应的人群概况。学习的参数空间实现:(a)隐式人群创作和控制,允许用户使用真实世界的轨迹数据定义所需的人群场景;(b)人群分析,促进识别输入中的人群行为,并通过潜在空间内的操作对未见场景进行分类。我们定量和定性地评估我们的框架,将其与真实世界的数据和选定的基线进行比较,同时还对专家和新手用户进行用户研究。我们的实验表明,生成的人群在模拟可信度、可信性和人群行为忠实度方面得分很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信