Ibrahim Musa, Alex Peter Seabright, Jonathan Barlow, Yusuke Nishimura
{"title":"MuRF1 Partners With TRIM72 to Impair Insulin Signaling in Skeletal Muscle Cells","authors":"Ibrahim Musa, Alex Peter Seabright, Jonathan Barlow, Yusuke Nishimura","doi":"10.1096/fj.202502066RR","DOIUrl":null,"url":null,"abstract":"<p>Muscle RING-finger protein 1 (MuRF1, gene name: <i>TRIM63</i>) is well known as a critical molecular regulator in skeletal muscle atrophy. Despite the identification of several substrates and interaction partners for MuRF1, the precise molecular mechanisms by which MuRF1 causes skeletal muscle atrophy remain unclear. To gain further insight into the underlying mechanism of skeletal muscle atrophy, we applied targeted biochemical approaches and identified tripartite motif-containing protein 72 (TRIM72) as a novel MuRF1-interacting protein. Subsequent analysis using MuRF1 knockout and rescue experiments showed that TRIM72 protein abundance is dependent on the presence of MuRF1 protein. Furthermore, TRIM72 protein level was increased by dexamethasone treatment in C2C12 myotubes, alongside increased MuRF1 protein level. Dexamethasone decreases IRS1/Akt signaling and glucose uptake specifically in wild type myotubes, but not in MuRF1 KO myotubes. Further analysis showed that overexpression of TRIM72 impairs IRS1/Akt signaling without the presence of MuRF1, indicating that MuRF1 induces a negative impact on insulin signaling through a plausible cooperation with TRIM72. Our findings provide novel non-degradative molecular roles of MuRF1 that link together skeletal muscle atrophy and impaired insulin sensitivity.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 19","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://faseb.onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202502066RR","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202502066RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Muscle RING-finger protein 1 (MuRF1, gene name: TRIM63) is well known as a critical molecular regulator in skeletal muscle atrophy. Despite the identification of several substrates and interaction partners for MuRF1, the precise molecular mechanisms by which MuRF1 causes skeletal muscle atrophy remain unclear. To gain further insight into the underlying mechanism of skeletal muscle atrophy, we applied targeted biochemical approaches and identified tripartite motif-containing protein 72 (TRIM72) as a novel MuRF1-interacting protein. Subsequent analysis using MuRF1 knockout and rescue experiments showed that TRIM72 protein abundance is dependent on the presence of MuRF1 protein. Furthermore, TRIM72 protein level was increased by dexamethasone treatment in C2C12 myotubes, alongside increased MuRF1 protein level. Dexamethasone decreases IRS1/Akt signaling and glucose uptake specifically in wild type myotubes, but not in MuRF1 KO myotubes. Further analysis showed that overexpression of TRIM72 impairs IRS1/Akt signaling without the presence of MuRF1, indicating that MuRF1 induces a negative impact on insulin signaling through a plausible cooperation with TRIM72. Our findings provide novel non-degradative molecular roles of MuRF1 that link together skeletal muscle atrophy and impaired insulin sensitivity.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.