Ebru Haciosmanoglu Aldogan, Başak Günçer, Sefer Baday, Bilge Özerman Edis, Zsolt Mártonfalvi, Gergely Agócs, Anna Hollósi, Andrea Varga, Hedvig Tordai, Miklós S. Z. Kellermayer, Ahmet Gül, Muhammet Bektaş
{"title":"Colchicine Modulates the Actin Cytoskeleton by Direct Binding to the Monomer and Facilitating Polymerization","authors":"Ebru Haciosmanoglu Aldogan, Başak Günçer, Sefer Baday, Bilge Özerman Edis, Zsolt Mártonfalvi, Gergely Agócs, Anna Hollósi, Andrea Varga, Hedvig Tordai, Miklós S. Z. Kellermayer, Ahmet Gül, Muhammet Bektaş","doi":"10.1096/fj.202501907R","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Actin, the most abundant intracellular protein, exists in a monomeric globular form (G-actin) or as polymerized filamentous actin (F-actin), and is essential for cell morphology, motility, and intracellular transport. Colchicine is a well-established anti-inflammatory drug primarily known for binding tubulin and inhibiting microtubule polymerization, yet its full mechanism of action remains unclear. Here, we investigated whether colchicine directly modulates actin cytoskeleton dynamics. Using human monocytic and murine B-lymphoma cell lines, combined with in vitro biochemical and biophysical assays, we found that colchicine binds directly to G-actin with submicromolar affinity, enhances actin polymerization, and stabilizes F-actin. Colchicine treatment in cells shifted the F−/G-actin ratio toward the filamentous form, increased cortical actin organization, and altered cell mechanical properties. Thermal shift assays confirmed increased actin stability, while molecular docking identified two potential colchicine-binding sites—one at the ATP-binding cleft in G-actin and another at the intermonomeric interface in F-actin. These findings reveal a previously unrecognized actin-modulatory role of colchicine, providing mechanistic insight into its anti-inflammatory effects and suggesting potential applications in diseases involving actin cytoskeletal dysregulation.</p>\n </div>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 19","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202501907R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Actin, the most abundant intracellular protein, exists in a monomeric globular form (G-actin) or as polymerized filamentous actin (F-actin), and is essential for cell morphology, motility, and intracellular transport. Colchicine is a well-established anti-inflammatory drug primarily known for binding tubulin and inhibiting microtubule polymerization, yet its full mechanism of action remains unclear. Here, we investigated whether colchicine directly modulates actin cytoskeleton dynamics. Using human monocytic and murine B-lymphoma cell lines, combined with in vitro biochemical and biophysical assays, we found that colchicine binds directly to G-actin with submicromolar affinity, enhances actin polymerization, and stabilizes F-actin. Colchicine treatment in cells shifted the F−/G-actin ratio toward the filamentous form, increased cortical actin organization, and altered cell mechanical properties. Thermal shift assays confirmed increased actin stability, while molecular docking identified two potential colchicine-binding sites—one at the ATP-binding cleft in G-actin and another at the intermonomeric interface in F-actin. These findings reveal a previously unrecognized actin-modulatory role of colchicine, providing mechanistic insight into its anti-inflammatory effects and suggesting potential applications in diseases involving actin cytoskeletal dysregulation.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.