Inflation in a Non-Commutative Riemannian-Foliated Quantum Gravity Domain

IF 1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Fridolin Weber, Peter O. Hess, José de Freitas Pacheco, Marcelo Marzola, Dimiter Hadjimichef, Benno Bodmann, Geovane Naysinger, Rodrigo Fraga, João G. G. Gimenez, Moisés Razeira, César A. Zen Vasconcellos
{"title":"Inflation in a Non-Commutative Riemannian-Foliated Quantum Gravity Domain","authors":"Fridolin Weber,&nbsp;Peter O. Hess,&nbsp;José de Freitas Pacheco,&nbsp;Marcelo Marzola,&nbsp;Dimiter Hadjimichef,&nbsp;Benno Bodmann,&nbsp;Geovane Naysinger,&nbsp;Rodrigo Fraga,&nbsp;João G. G. Gimenez,&nbsp;Moisés Razeira,&nbsp;César A. Zen Vasconcellos","doi":"10.1002/asna.20240152","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We explore the implications of Branch-Cut Quantum Gravity (BCQG), a novel framework leveraging non-commutative geometry within a symplectic phase-space, on the accelerated expansion of the universe. Non-commutativity, introduced through a deformation of the Poisson algebra and enhanced by a symplectic metric, provides a robust mechanism for addressing key challenges in cosmology, such as the youngness paradox and the fine-tuning of initial conditions in standard inflationary models. By embedding quantum dual-field dynamics within a Riemannian-foliated spacetime, BCQG naturally integrates short- and long-range spacetime effects into a unified formalism. This approach offers an alternative to standard inflationary models by predicting cosmic acceleration through geometric restructuring rather than finely-tuned initial states. In contrast to models like ΛCDM or String Theory, BCQG introduces unique corrections to cosmic scale factors and predicts a novel transition between contraction and expansion phases via topological branch-cuts, circumventing the singularity problem. Moreover, BCQG's non-commutative formulation provides testable predictions, such as modifications in cosmic microwave background (CMB) anisotropies and large-scale structure evolution. We discuss the mathematical foundation, observational implications, and future avenues for validating BCQG through astrophysical data, positioning it as a promising theoretical alternative for understanding the universe's accelerated growth.</p>\n </div>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"346 7-8","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240152","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the implications of Branch-Cut Quantum Gravity (BCQG), a novel framework leveraging non-commutative geometry within a symplectic phase-space, on the accelerated expansion of the universe. Non-commutativity, introduced through a deformation of the Poisson algebra and enhanced by a symplectic metric, provides a robust mechanism for addressing key challenges in cosmology, such as the youngness paradox and the fine-tuning of initial conditions in standard inflationary models. By embedding quantum dual-field dynamics within a Riemannian-foliated spacetime, BCQG naturally integrates short- and long-range spacetime effects into a unified formalism. This approach offers an alternative to standard inflationary models by predicting cosmic acceleration through geometric restructuring rather than finely-tuned initial states. In contrast to models like ΛCDM or String Theory, BCQG introduces unique corrections to cosmic scale factors and predicts a novel transition between contraction and expansion phases via topological branch-cuts, circumventing the singularity problem. Moreover, BCQG's non-commutative formulation provides testable predictions, such as modifications in cosmic microwave background (CMB) anisotropies and large-scale structure evolution. We discuss the mathematical foundation, observational implications, and future avenues for validating BCQG through astrophysical data, positioning it as a promising theoretical alternative for understanding the universe's accelerated growth.

Abstract Image

非交换黎曼叶状量子引力域中的暴胀
我们探讨了分支切量子引力(BCQG)的含义,这是一个利用辛相空间内非交换几何的新框架,对宇宙的加速膨胀。非交换性,通过泊松代数的变形引入,并通过辛度量增强,为解决宇宙学中的关键挑战提供了一个强大的机制,例如年轻悖论和标准暴胀模型中初始条件的微调。通过在黎曼叶状时空中嵌入量子双场动力学,BCQG自然地将短期和长期时空效应整合到统一的形式体系中。这种方法提供了一种替代标准暴胀模型的方法,它通过几何重构而不是精细调整的初始状态来预测宇宙加速度。与ΛCDM或弦理论等模型相比,BCQG引入了对宇宙尺度因子的独特修正,并通过拓扑分支切割预测了收缩和膨胀阶段之间的新转变,从而绕过了奇点问题。此外,BCQG的非交换公式提供了可验证的预测,如宇宙微波背景(CMB)各向异性和大尺度结构演化的变化。我们讨论了通过天体物理数据验证BCQG的数学基础、观测意义和未来途径,并将其定位为理解宇宙加速增长的有前途的理论替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomische Nachrichten
Astronomische Nachrichten 地学天文-天文与天体物理
CiteScore
1.80
自引率
11.10%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信