Francesca Bianchi , Giorgio Stefani , Anna Chiara Zagati
{"title":"A geometrical approach to the sharp Hardy inequality in Sobolev–Slobodeckiĭ spaces","authors":"Francesca Bianchi , Giorgio Stefani , Anna Chiara Zagati","doi":"10.1016/j.na.2025.113948","DOIUrl":null,"url":null,"abstract":"<div><div>We give a partial negative answer to a question left open in a previous work by Brasco and the first and third-named authors concerning the sharp constant in the fractional Hardy inequality on convex sets. Our approach has a geometrical flavor and equivalently reformulates the sharp constant in the limit case <span><math><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></math></span> as the Cheeger constant for the fractional perimeter and the Lebesgue measure with a suitable weight. As a by-product, we obtain new lower bounds on the sharp constant in the 1-dimensional case, even for non-convex sets, some of which optimal in the case <span><math><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"263 ","pages":"Article 113948"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25002007","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We give a partial negative answer to a question left open in a previous work by Brasco and the first and third-named authors concerning the sharp constant in the fractional Hardy inequality on convex sets. Our approach has a geometrical flavor and equivalently reformulates the sharp constant in the limit case as the Cheeger constant for the fractional perimeter and the Lebesgue measure with a suitable weight. As a by-product, we obtain new lower bounds on the sharp constant in the 1-dimensional case, even for non-convex sets, some of which optimal in the case .
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.