Novel unsupervised Bayesian method for Near Real-Time forest loss detection using Sentinel-1 SAR time series: Assessment over sampled deforestation events in Amazonia and the Cerrado
Marta Bottani , Laurent Ferro-Famil , Juan Doblas Prieto , Stéphane Mermoz , Alexandre Bouvet , Thierry Koleck , Thuy Le Toan
{"title":"Novel unsupervised Bayesian method for Near Real-Time forest loss detection using Sentinel-1 SAR time series: Assessment over sampled deforestation events in Amazonia and the Cerrado","authors":"Marta Bottani , Laurent Ferro-Famil , Juan Doblas Prieto , Stéphane Mermoz , Alexandre Bouvet , Thierry Koleck , Thuy Le Toan","doi":"10.1016/j.rse.2025.115037","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past four decades, forests have experienced major disturbances, highlighting the need for Near Real-Time (NRT) monitoring. Traditional optical-based detection is cloud-sensitive, whereas Synthetic Aperture Radar (SAR)-based frameworks enable all-weather observation. Yet, SAR monitoring has mainly focused on humid tropical forests, with reduced performance in regions showing strong seasonal backscatter variation, such as tropical savannas. Detecting small-scale forest loss also remains difficult due to the spatial resolution loss from speckle filtering. This paper presents an unsupervised SAR-based disturbance detection method with NRT capabilities, using Bayesian inference. Building on an existing methodology, the approach processes single-polarization Sentinel-1 SAR time series through Bayesian conjugate analysis. Forest disturbance is framed as a changepoint detection problem, where each new observation updates the probability of forest loss using prior information and a data model. The algorithm uses a hidden Markov chain to adapt recursively to seasonal variation and bypasses spatial filtering, preserving native data resolution and enhancing small-scale forest loss detection. Additionally, a methodology accounts for proximity to past disturbances. The method is tested on two 2020 reference datasets from the Brazilian Amazon and Cerrado savanna. The first covers small validation polygons (0.1–1 ha, excluding selective logging), totaling 2,650 ha in the Amazon and 450 ha in the Cerrado. The second includes larger clearings totaling 11,200 ha in the Amazon, and 12,700 ha in the Cerrado. A further comparison is conducted with operational NRT forest loss monitoring approaches. Results show substantial gains in detecting small-scale disturbances with reduced false alarms. In the Amazon, the method achieves an F1-score of 97.3% versus 93.1% for the current leading NRT approach. In the Cerrado, it reaches an F1-score of 97.4%, far exceeding the 33.3% of the optical-based method. For larger clearings, performance matches existing SAR approaches in the Amazon. While combined optical-SAR monitoring increases true positives, it also raises false alarm rates. In the Cerrado, the proposed method clearly outperforms optical monitoring, and in both regions it improves timeliness relative to individual operational approaches.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"331 ","pages":"Article 115037"},"PeriodicalIF":11.4000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725004419","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past four decades, forests have experienced major disturbances, highlighting the need for Near Real-Time (NRT) monitoring. Traditional optical-based detection is cloud-sensitive, whereas Synthetic Aperture Radar (SAR)-based frameworks enable all-weather observation. Yet, SAR monitoring has mainly focused on humid tropical forests, with reduced performance in regions showing strong seasonal backscatter variation, such as tropical savannas. Detecting small-scale forest loss also remains difficult due to the spatial resolution loss from speckle filtering. This paper presents an unsupervised SAR-based disturbance detection method with NRT capabilities, using Bayesian inference. Building on an existing methodology, the approach processes single-polarization Sentinel-1 SAR time series through Bayesian conjugate analysis. Forest disturbance is framed as a changepoint detection problem, where each new observation updates the probability of forest loss using prior information and a data model. The algorithm uses a hidden Markov chain to adapt recursively to seasonal variation and bypasses spatial filtering, preserving native data resolution and enhancing small-scale forest loss detection. Additionally, a methodology accounts for proximity to past disturbances. The method is tested on two 2020 reference datasets from the Brazilian Amazon and Cerrado savanna. The first covers small validation polygons (0.1–1 ha, excluding selective logging), totaling 2,650 ha in the Amazon and 450 ha in the Cerrado. The second includes larger clearings totaling 11,200 ha in the Amazon, and 12,700 ha in the Cerrado. A further comparison is conducted with operational NRT forest loss monitoring approaches. Results show substantial gains in detecting small-scale disturbances with reduced false alarms. In the Amazon, the method achieves an F1-score of 97.3% versus 93.1% for the current leading NRT approach. In the Cerrado, it reaches an F1-score of 97.4%, far exceeding the 33.3% of the optical-based method. For larger clearings, performance matches existing SAR approaches in the Amazon. While combined optical-SAR monitoring increases true positives, it also raises false alarm rates. In the Cerrado, the proposed method clearly outperforms optical monitoring, and in both regions it improves timeliness relative to individual operational approaches.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.