The genetic relationship between immune competence traits and micro-genetic environmental sensitivity of weight, fat, and muscle traits in Australian Angus cattle
IF 3.1 1区 农林科学Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Mette D. Madsen, Julius H. J. van der Werf, Aaron Ingham, Brad Hine, Antonio Reverter, Sam A. Clark
{"title":"The genetic relationship between immune competence traits and micro-genetic environmental sensitivity of weight, fat, and muscle traits in Australian Angus cattle","authors":"Mette D. Madsen, Julius H. J. van der Werf, Aaron Ingham, Brad Hine, Antonio Reverter, Sam A. Clark","doi":"10.1186/s12711-025-00998-8","DOIUrl":null,"url":null,"abstract":"Improving immune competence (IC) in livestock could reduce the incidence of disease and reliance on the use of antibiotics. In Australian Angus cattle, IC is a measure of an animal’s combined ability to mount antibody and cell-mediated immune responses (AMIR and CMIR). Immune competence may affect traits such as growth and related phenotypes as well as the variability of such phenotypes. However, the genetic relationship between IC and genetic sensitivity to individual environments, measured as micro-genetic environmental sensitivity (GES), is yet to be reported. In this study the genetic parameters of, and correlations between, AMIR or CMIR and micro-GES of live weaning weight (WW) and ultrasound scan records of rib (RIB) and rump (RUMP) fat depth and eye muscle area (EMA) measured between 501 and 900 days of age were estimated. This was accomplished by fitting eight multivariate models with AMIR or CMIR and a double hierarchical generalised linear model on a production trait. The heritabilities were 0.35 and 0.36 for AMIR and CMIR, respectively, and 0.25–0.70 for the production traits. The heritabilities and the genetic coefficient of variation of micro-GES of the production traits ranged from 0.01–0.04 and 18–82%, respectively, and were higher in RIB and RUMP than WW and EMA. The genetic correlations between AMIR and WW, RIB, RUMP, or EMA were -0.35 (SE 0.11), 0.11 (0.12), 0.06 (0.12) and -0.13 (0.12), respectively, while the genetic correlations between CMIR and WW, RIB, RUMP, or EMA were -0.26 (0.12), 0.15 (0.13), 0.16 (0.12) and 0.04 (0.13), respectively. The genetic correlations between IC and micro-GES of WW, RIB, RUMP or EMA were moderately negative to lowly positive and had large SEs rendering them non-significant. The unfavourable genetic correlation between the IC traits and WW supports the hypothesis that mounting an effective immune response can direct resources away from growth when resources are limited. Based on the heritabilities and genetic coefficient of variation of micro-GES, selection to increase uniformity is possible for WW, RIB, RUMP and EMA. The standard errors of the genetic correlations between IC and micro-GES of the production traits were too large to draw any definite conclusions about their relationships. Standard errors are expected to reduce as more IC records are collected.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-025-00998-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Improving immune competence (IC) in livestock could reduce the incidence of disease and reliance on the use of antibiotics. In Australian Angus cattle, IC is a measure of an animal’s combined ability to mount antibody and cell-mediated immune responses (AMIR and CMIR). Immune competence may affect traits such as growth and related phenotypes as well as the variability of such phenotypes. However, the genetic relationship between IC and genetic sensitivity to individual environments, measured as micro-genetic environmental sensitivity (GES), is yet to be reported. In this study the genetic parameters of, and correlations between, AMIR or CMIR and micro-GES of live weaning weight (WW) and ultrasound scan records of rib (RIB) and rump (RUMP) fat depth and eye muscle area (EMA) measured between 501 and 900 days of age were estimated. This was accomplished by fitting eight multivariate models with AMIR or CMIR and a double hierarchical generalised linear model on a production trait. The heritabilities were 0.35 and 0.36 for AMIR and CMIR, respectively, and 0.25–0.70 for the production traits. The heritabilities and the genetic coefficient of variation of micro-GES of the production traits ranged from 0.01–0.04 and 18–82%, respectively, and were higher in RIB and RUMP than WW and EMA. The genetic correlations between AMIR and WW, RIB, RUMP, or EMA were -0.35 (SE 0.11), 0.11 (0.12), 0.06 (0.12) and -0.13 (0.12), respectively, while the genetic correlations between CMIR and WW, RIB, RUMP, or EMA were -0.26 (0.12), 0.15 (0.13), 0.16 (0.12) and 0.04 (0.13), respectively. The genetic correlations between IC and micro-GES of WW, RIB, RUMP or EMA were moderately negative to lowly positive and had large SEs rendering them non-significant. The unfavourable genetic correlation between the IC traits and WW supports the hypothesis that mounting an effective immune response can direct resources away from growth when resources are limited. Based on the heritabilities and genetic coefficient of variation of micro-GES, selection to increase uniformity is possible for WW, RIB, RUMP and EMA. The standard errors of the genetic correlations between IC and micro-GES of the production traits were too large to draw any definite conclusions about their relationships. Standard errors are expected to reduce as more IC records are collected.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.