Joana Jacinto, Anna Letko, Arcangelo Gentile, Arthur Otter, Tobias Floyd, Rachael Collins, Moyna Richey, Helen Carty, Sandra Scholes, Alwyn Jones, Harriet Fuller, Irene M. Häfliger, Ben Strugnell, Eveline Studer, Cinzia Benazzi, Marilena Bolcato, Jože Starič, Alessia Diana, Jim Weber, Markus Freick, Gesine Lühken, Imke Tammen, David C. E. Kraft, Celina M. Lindgren, Marlene Sickinger, Sara Soto, Brendon A. O’Rourke, Jørgen S. Agerholm, Cord Drögemüller
{"title":"Exploring skeletal disorders in cattle and sheep: a WGS-based framework for diagnosis and classification","authors":"Joana Jacinto, Anna Letko, Arcangelo Gentile, Arthur Otter, Tobias Floyd, Rachael Collins, Moyna Richey, Helen Carty, Sandra Scholes, Alwyn Jones, Harriet Fuller, Irene M. Häfliger, Ben Strugnell, Eveline Studer, Cinzia Benazzi, Marilena Bolcato, Jože Starič, Alessia Diana, Jim Weber, Markus Freick, Gesine Lühken, Imke Tammen, David C. E. Kraft, Celina M. Lindgren, Marlene Sickinger, Sara Soto, Brendon A. O’Rourke, Jørgen S. Agerholm, Cord Drögemüller","doi":"10.1186/s12711-025-01002-z","DOIUrl":null,"url":null,"abstract":"Genetic skeletal disorders are a heterogeneous group of syndromic or non-syndromic diseases characterized by abnormal bone, joint or cartilage development. These disorders generally occur sporadically in ruminants. Although a genetic etiology is often suspected, only a limited number of causal variants have been identified and no comprehensive genetic analyses of a cohort of bovine and ovine skeletal developmental defects have been published. The aims of our study were (1) to propose a nosology of genetic skeletal disorders in cattle and sheep and (2) to contribute to the nosology with a number of novel genomically characterized cases. Based on a literature review, the proposed nosology of skeletal disorders in cattle and sheep with a confirmed molecular cause was found to comprise 43 different disorders associated with 45 different genes. In addition, horn traits were also included. The disorders were grouped into 21 categories based on the human medical nosology. Thirty novel bovine and nine ovine cases of congenital skeletal disorders were investigated. These represented 19 different disorders, which were grouped into 9 categories. Whole-genome sequencing (WGS) data were generated based on sample availability for either complete trios, affected paternal halfsiblings or isolated single cases. We identified 21 SNVs or small indels for 12 skeletal disorders. Of these, 17 were considered candidate variants affecting 16 different genes, including 11 that were classified as pathogenic and six as likely pathogenic. Additionally, the remaining 4 SNVs were of uncertain significance. Two aneuploidies (trisomy and partial monosomy) were the cause of two different disorders. For eight cases affected by six disorders no variant could be identified. Different modes of inheritance were detected, including spontaneous dominant de novo mutations, autosomal recessive alleles, an X-linked dominant allele, as well as aneuploidies. The overall molecular genetic diagnostic rate was 64%. Genomic analysis revealed considerable heterogeneity of the described phenotypes in terms of mode of inheritance, affected genes, and variant type. We propose, for the first time in veterinary medicine, a nosology of genetic skeletal disorders in ruminants that may be useful for more precise differential clinicopathological diagnosis. We emphasize the potential of WGS to enhance genetic disease diagnosis and the importance of adopting a nosology for disease categorization.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"57 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-025-01002-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic skeletal disorders are a heterogeneous group of syndromic or non-syndromic diseases characterized by abnormal bone, joint or cartilage development. These disorders generally occur sporadically in ruminants. Although a genetic etiology is often suspected, only a limited number of causal variants have been identified and no comprehensive genetic analyses of a cohort of bovine and ovine skeletal developmental defects have been published. The aims of our study were (1) to propose a nosology of genetic skeletal disorders in cattle and sheep and (2) to contribute to the nosology with a number of novel genomically characterized cases. Based on a literature review, the proposed nosology of skeletal disorders in cattle and sheep with a confirmed molecular cause was found to comprise 43 different disorders associated with 45 different genes. In addition, horn traits were also included. The disorders were grouped into 21 categories based on the human medical nosology. Thirty novel bovine and nine ovine cases of congenital skeletal disorders were investigated. These represented 19 different disorders, which were grouped into 9 categories. Whole-genome sequencing (WGS) data were generated based on sample availability for either complete trios, affected paternal halfsiblings or isolated single cases. We identified 21 SNVs or small indels for 12 skeletal disorders. Of these, 17 were considered candidate variants affecting 16 different genes, including 11 that were classified as pathogenic and six as likely pathogenic. Additionally, the remaining 4 SNVs were of uncertain significance. Two aneuploidies (trisomy and partial monosomy) were the cause of two different disorders. For eight cases affected by six disorders no variant could be identified. Different modes of inheritance were detected, including spontaneous dominant de novo mutations, autosomal recessive alleles, an X-linked dominant allele, as well as aneuploidies. The overall molecular genetic diagnostic rate was 64%. Genomic analysis revealed considerable heterogeneity of the described phenotypes in terms of mode of inheritance, affected genes, and variant type. We propose, for the first time in veterinary medicine, a nosology of genetic skeletal disorders in ruminants that may be useful for more precise differential clinicopathological diagnosis. We emphasize the potential of WGS to enhance genetic disease diagnosis and the importance of adopting a nosology for disease categorization.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.