Rongyue Yao, Yuan Zhang, Changlin Zheng, Luxia Wang
{"title":"Plexcitons in metal Nanotriangle-WS2 Composite System Studied by Electron Energy Loss Spectroscopy","authors":"Rongyue Yao, Yuan Zhang, Changlin Zheng, Luxia Wang","doi":"10.1039/d5cp02397a","DOIUrl":null,"url":null,"abstract":"Strong coupling between plasmons and excitons in transition metal dichalcogenides enables roomtemperature plexciton formation, providing a crucial platform for investigating Bose-Einstein condensation, low-threshold nanolasers, and ultrafast optical switches. Plexcitons can be produced by far-field optical excitation and near-field electron beam excitation, while electron beam excitation enables the detection of dark plasmon modes and their spatial imaging. Using the boundary element method with a coupled harmonic oscillator model, electron energy loss spectroscopy of silver nanotriangle, WS<small><sub>2</sub></small> , and their composite system is simulated. Our numerical results are consistent with the corresponding experiments. From the charge distributions of silver nanotriangle in electron beam excitation, the dipole configurations corresponding to bright and dark plasmon modes are identified. Additionally, spatial imaging maps of electron loss from plexcitons are simulated, and the proportions of plasmon and exciton in plexciton produced by different detunings are analyzed theoretically. This study provides guidance for further experimental and theoretical research on strong coupling in analogous composite systems.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"30 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp02397a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Strong coupling between plasmons and excitons in transition metal dichalcogenides enables roomtemperature plexciton formation, providing a crucial platform for investigating Bose-Einstein condensation, low-threshold nanolasers, and ultrafast optical switches. Plexcitons can be produced by far-field optical excitation and near-field electron beam excitation, while electron beam excitation enables the detection of dark plasmon modes and their spatial imaging. Using the boundary element method with a coupled harmonic oscillator model, electron energy loss spectroscopy of silver nanotriangle, WS2 , and their composite system is simulated. Our numerical results are consistent with the corresponding experiments. From the charge distributions of silver nanotriangle in electron beam excitation, the dipole configurations corresponding to bright and dark plasmon modes are identified. Additionally, spatial imaging maps of electron loss from plexcitons are simulated, and the proportions of plasmon and exciton in plexciton produced by different detunings are analyzed theoretically. This study provides guidance for further experimental and theoretical research on strong coupling in analogous composite systems.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.