SketchRefiner: Text-Guided Sketch Refinement Through Latent Diffusion Models.

IF 6.5
Yingjie Tian, Minghao Liu, Haoran Jiang, Yunbin Tu, Duo Su
{"title":"SketchRefiner: Text-Guided Sketch Refinement Through Latent Diffusion Models.","authors":"Yingjie Tian, Minghao Liu, Haoran Jiang, Yunbin Tu, Duo Su","doi":"10.1109/TVCG.2025.3613388","DOIUrl":null,"url":null,"abstract":"<p><p>Free-hand sketches serve as efficient tools for creativity and communication, yet expressing ideas clearly through sketches remains challenging for untrained individuals. Optimizing sketches through text guidance can enhance individuals' ability to effectively convey their ideas and improve overall communication efficiency. While recent advancements in Artificial Intelligence Generated Content (AIGC) have been notable, research on optimizing free-hand sketches remains relatively unexplored. In this paper, we introduce SketchRefiner, an innovative method designed to refine rough sketches from various categories into polished versions guided by text prompts. SketchRefiner utilizes a latent diffusion model with ControlNet to guide a differentiable rasterizer in optimizing a set of Bézier curves. We extend the score distillation sampling (SDS) loss and introduce a joint semantic loss to encourage sketches aligned with given text prompts and free-hand sketches. Additionally, we propose a fusion attention-map stroke initialization strategy to improve the quality of refined sketches. Furthermore, SketchRefiner provides users with fine-grained control over text guidance. Through extensive experiments, we demonstrate that our method can generate accurate and aesthetically pleasing refined sketches that closely align with input text prompts and sketches.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3613388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Free-hand sketches serve as efficient tools for creativity and communication, yet expressing ideas clearly through sketches remains challenging for untrained individuals. Optimizing sketches through text guidance can enhance individuals' ability to effectively convey their ideas and improve overall communication efficiency. While recent advancements in Artificial Intelligence Generated Content (AIGC) have been notable, research on optimizing free-hand sketches remains relatively unexplored. In this paper, we introduce SketchRefiner, an innovative method designed to refine rough sketches from various categories into polished versions guided by text prompts. SketchRefiner utilizes a latent diffusion model with ControlNet to guide a differentiable rasterizer in optimizing a set of Bézier curves. We extend the score distillation sampling (SDS) loss and introduce a joint semantic loss to encourage sketches aligned with given text prompts and free-hand sketches. Additionally, we propose a fusion attention-map stroke initialization strategy to improve the quality of refined sketches. Furthermore, SketchRefiner provides users with fine-grained control over text guidance. Through extensive experiments, we demonstrate that our method can generate accurate and aesthetically pleasing refined sketches that closely align with input text prompts and sketches.

SketchRefiner:通过潜在扩散模型进行文本引导的草图细化。
手绘草图是创造力和沟通的有效工具,但对于未经训练的人来说,通过草图清晰地表达想法仍然是一项挑战。通过文本引导对草图进行优化,可以增强个体有效传达思想的能力,提高整体沟通效率。虽然人工智能生成内容(AIGC)的最新进展引人注目,但优化手绘草图的研究仍然相对未被探索。在本文中,我们介绍了SketchRefiner,这是一种创新的方法,旨在通过文本提示将各种类别的粗糙草图提炼成抛光版本。SketchRefiner利用潜在扩散模型和ControlNet来指导可微光栅器优化一组b2013.zier曲线。我们扩展了分数蒸馏采样(SDS)损失,并引入了联合语义损失,以鼓励与给定文本提示和手绘草图对齐的草图。此外,我们提出了一种融合注意图笔画初始化策略,以提高精炼草图的质量。此外,SketchRefiner为用户提供了对文本指导的细粒度控制。通过大量的实验,我们证明了我们的方法可以生成准确的、美观的、与输入文本提示和草图紧密一致的精致草图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信