Characterizing the regulatory logic of transcriptional control at the DNA sequence level by ensembles of thermodynamic models.

IF 5.4
Alan Utsuni Sabino, Drielly de Moraes Guerreiro, Ah-Ram Kim, Alexandre Ferreira Ramos, John Reinitz
{"title":"Characterizing the regulatory logic of transcriptional control at the DNA sequence level by ensembles of thermodynamic models.","authors":"Alan Utsuni Sabino, Drielly de Moraes Guerreiro, Ah-Ram Kim, Alexandre Ferreira Ramos, John Reinitz","doi":"10.1093/bioinformatics/btaf534","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Understanding how the genome encodes the regulatory logic of transcription is a main challenge of the post-genomic era, and can be overcome with the aid of customized computational tools.</p><p><strong>Results: </strong>We report an automated framework for analyzing an ensemble of fits to data of a thermodynamics-based sequence-level model for transcriptional regulation. The fits are clustered accordingly with their intrinsic regulatory logic. A multiscale analysis enables visualization of quantitative features resulting from the deconvolution of the regulatory profile provided by multiple transcription factors interacting with the locus of a gene. Quantitative experimental data on reporters driven by the whole locus of the even-skipped gene in the blastoderm of Drosophila embryos was used for validating our approach. A few clusters of highly active DNA binding sites within the enhancers collectively modulate even-skipped gene transcription. Analysis of variable enhancers' length shows the importance of bound protein-protein interactions for transcriptional regulation. The interplay between activation and quenching enables function conservation of enhancers despite length variations.</p><p><strong>Availability and implementation: </strong>the transcription factor level data used for performing the reported study is accessible in the input files in Zenodo and GitHub as well the full code. Additional data from formerly FlyEx database will be available under request.</p><p><strong>Supplementary information: </strong>Supplementary data is available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Understanding how the genome encodes the regulatory logic of transcription is a main challenge of the post-genomic era, and can be overcome with the aid of customized computational tools.

Results: We report an automated framework for analyzing an ensemble of fits to data of a thermodynamics-based sequence-level model for transcriptional regulation. The fits are clustered accordingly with their intrinsic regulatory logic. A multiscale analysis enables visualization of quantitative features resulting from the deconvolution of the regulatory profile provided by multiple transcription factors interacting with the locus of a gene. Quantitative experimental data on reporters driven by the whole locus of the even-skipped gene in the blastoderm of Drosophila embryos was used for validating our approach. A few clusters of highly active DNA binding sites within the enhancers collectively modulate even-skipped gene transcription. Analysis of variable enhancers' length shows the importance of bound protein-protein interactions for transcriptional regulation. The interplay between activation and quenching enables function conservation of enhancers despite length variations.

Availability and implementation: the transcription factor level data used for performing the reported study is accessible in the input files in Zenodo and GitHub as well the full code. Additional data from formerly FlyEx database will be available under request.

Supplementary information: Supplementary data is available at Bioinformatics online.

用热力学模型集合描述DNA序列水平上转录控制的调控逻辑。
动机:了解基因组如何编码转录的调控逻辑是后基因组时代的主要挑战,并且可以通过定制计算工具的帮助来克服。结果:我们报告了一个自动框架,用于分析基于热力学的序列水平模型的转录调控数据的拟合集合。根据其内在的调节逻辑,对其进行相应的聚类。多尺度分析可以可视化由多个转录因子与基因位点相互作用提供的调控谱的反褶积所产生的定量特征。利用果蝇胚胚中均匀跳过基因的整个位点驱动的报告基因的定量实验数据来验证我们的方法。增强子内的一些高活性DNA结合位点簇共同调节甚至跳过的基因转录。对可变增强子长度的分析显示了结合蛋白-蛋白相互作用对转录调控的重要性。激活和猝灭之间的相互作用使增强子的功能保持,尽管长度变化。可用性和实现:用于执行报告研究的转录因子水平数据可以在Zenodo和GitHub的输入文件以及完整的代码中访问。原FlyEx数据库的其他数据将根据要求提供。补充信息:补充数据可在生物信息学在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信