MULAN: multimodal protein language model for sequence and structure encoding.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-05-20 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf117
Daria Frolova, Marina Pak, Anna Litvin, Ilya Sharov, Dmitry Ivankov, Ivan Oseledets
{"title":"MULAN: multimodal protein language model for sequence and structure encoding.","authors":"Daria Frolova, Marina Pak, Anna Litvin, Ilya Sharov, Dmitry Ivankov, Ivan Oseledets","doi":"10.1093/bioadv/vbaf117","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Most protein language models (PLMs) produce high-quality representations using only protein sequences. However, incorporating known protein structures is important for many prediction tasks, leading to increased interest in structure-aware PLMs. Currently, structure-aware PLMs are either trained from scratch or add significant parameter overhead for the structure encoder.</p><p><strong>Results: </strong>In this study, we propose MULAN, a MULtimodal PLM for both sequence and ANgle-based structure encoding. MULAN has a pre-trained sequence encoder and an introduced parameter-efficient Structure Adapter, which are then fused and trained together. Based on the evaluation of nine downstream tasks, MULAN models of various sizes show a quality improvement compared to both sequence-only ESM2 and structure-aware SaProt. The main improvements are shown for the protein-protein interaction prediction (up to 0.12 in AUROC). Importantly, unlike other models, MULAN offers a cheap increase in structural awareness of protein representations because of the finetuning of existing PLMs instead of training from scratch. We perform a detailed analysis of the proposed model and demonstrate its awareness of the protein structure.</p><p><strong>Availability and implementation: </strong>The implementation, training data, and model checkpoints are available at https://github.com/DFrolova/MULAN.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf117"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452268/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Most protein language models (PLMs) produce high-quality representations using only protein sequences. However, incorporating known protein structures is important for many prediction tasks, leading to increased interest in structure-aware PLMs. Currently, structure-aware PLMs are either trained from scratch or add significant parameter overhead for the structure encoder.

Results: In this study, we propose MULAN, a MULtimodal PLM for both sequence and ANgle-based structure encoding. MULAN has a pre-trained sequence encoder and an introduced parameter-efficient Structure Adapter, which are then fused and trained together. Based on the evaluation of nine downstream tasks, MULAN models of various sizes show a quality improvement compared to both sequence-only ESM2 and structure-aware SaProt. The main improvements are shown for the protein-protein interaction prediction (up to 0.12 in AUROC). Importantly, unlike other models, MULAN offers a cheap increase in structural awareness of protein representations because of the finetuning of existing PLMs instead of training from scratch. We perform a detailed analysis of the proposed model and demonstrate its awareness of the protein structure.

Availability and implementation: The implementation, training data, and model checkpoints are available at https://github.com/DFrolova/MULAN.

MULAN:序列和结构编码的多模态蛋白质语言模型。
动机:大多数蛋白质语言模型(PLMs)仅使用蛋白质序列产生高质量的表示。然而,结合已知的蛋白质结构对于许多预测任务很重要,导致对结构感知的plm的兴趣增加。目前,结构感知plm要么从头开始训练,要么为结构编码器增加重要的参数开销。结果:在这项研究中,我们提出了MULAN,一个多模态PLM,用于序列和基于角度的结构编码。MULAN具有预先训练的序列编码器和引入的参数高效结构适配器,然后将它们融合并训练在一起。基于对9个下游任务的评估,与仅序列的ESM2和结构感知的SaProt相比,不同大小的MULAN模型的质量都有所提高。主要的改进表现在蛋白质-蛋白质相互作用预测上(AUROC达到0.12)。重要的是,与其他模型不同,MULAN提供了对蛋白质表示的结构意识的廉价增加,因为它对现有plm进行了微调,而不是从头开始训练。我们对所提出的模型进行了详细的分析,并证明了它对蛋白质结构的认识。可用性和实现:实现、训练数据和模型检查点可在https://github.com/DFrolova/MULAN上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信