PharmacoForge: pharmacophore generation with diffusion models.

IF 3.9 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-09-08 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1628800
Emma L Flynn, Riya Shah, Ian Dunn, Rishal Aggarwal, David Ryan Koes
{"title":"PharmacoForge: pharmacophore generation with diffusion models.","authors":"Emma L Flynn, Riya Shah, Ian Dunn, Rishal Aggarwal, David Ryan Koes","doi":"10.3389/fbinf.2025.1628800","DOIUrl":null,"url":null,"abstract":"<p><p>Structure-based drug design (SBDD) is enhanced by machine learning (ML) to improve both virtual screening and <i>de novo</i> design. Despite advances in ML tools for both strategies, screening remains bounded by time and computational cost, while generative models frequently produce invalid and synthetically inaccessible molecules. Screening time can be improved with pharmacophore search, which quickly identifies ligands in a database that match a pharmacophore query. In this work, we introduce PharmacoForge, a diffusion model for generating 3D pharmacophores conditioned on a protein pocket. Generated pharmacophore queries identify ligands that are guaranteed to be valid, commercially available molecules. We evaluate PharmacoForge against automated pharmacophore generation methods using the LIT-PCBA benchmark and ligand generative models through a docking-based evaluation framework. We further assess pharmacophore quality through a retrospective screening of the DUD-E dataset. PharmacoForge surpasses other pharmacophore generation methods in the LIT-PCBA benchmark, and resulting ligands from pharmacophore queries performed similarly to <i>de novo</i> generated ligands when docking to DUD-E targets and had lower strain energies compared to <i>de novo</i> generated ligands.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1628800"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451294/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1628800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Structure-based drug design (SBDD) is enhanced by machine learning (ML) to improve both virtual screening and de novo design. Despite advances in ML tools for both strategies, screening remains bounded by time and computational cost, while generative models frequently produce invalid and synthetically inaccessible molecules. Screening time can be improved with pharmacophore search, which quickly identifies ligands in a database that match a pharmacophore query. In this work, we introduce PharmacoForge, a diffusion model for generating 3D pharmacophores conditioned on a protein pocket. Generated pharmacophore queries identify ligands that are guaranteed to be valid, commercially available molecules. We evaluate PharmacoForge against automated pharmacophore generation methods using the LIT-PCBA benchmark and ligand generative models through a docking-based evaluation framework. We further assess pharmacophore quality through a retrospective screening of the DUD-E dataset. PharmacoForge surpasses other pharmacophore generation methods in the LIT-PCBA benchmark, and resulting ligands from pharmacophore queries performed similarly to de novo generated ligands when docking to DUD-E targets and had lower strain energies compared to de novo generated ligands.

PharmacoForge:药效团生成与扩散模型。
基于结构的药物设计(SBDD)通过机器学习(ML)增强,以改进虚拟筛选和从头设计。尽管这两种策略的ML工具都取得了进步,但筛选仍然受到时间和计算成本的限制,而生成模型经常产生无效和合成不可接近的分子。通过药效团搜索,可以快速识别数据库中与药效团查询匹配的配体,从而提高筛选时间。在这项工作中,我们介绍了PharmacoForge,这是一种用于生成基于蛋白质口袋的3D药效团的扩散模型。生成的药效团查询识别保证有效的配体,商业上可用的分子。我们通过基于对接的评估框架,使用LIT-PCBA基准和配体生成模型,对PharmacoForge与自动药效团生成方法进行了评估。我们通过对ddu - e数据集的回顾性筛选进一步评估药效团质量。在lite - pcba基准测试中,PharmacoForge超越了其他药效团生成方法,从药效团查询得到的配体在对接到ddu - e靶标时的表现与从头生成的配体相似,并且与从头生成的配体相比具有更低的应变能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信