{"title":"Intelligent educational systems based on adaptive learning algorithms and multimodal behavior modeling.","authors":"Yuwei Li, Botao Lu","doi":"10.7717/peerj-cs.3157","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement of artificial intelligence, the demand for personalized and adaptive learning has driven the development of intelligent educational systems. This article proposes a novel adaptive learning-driven architecture that combines multimodal behavioral modeling and personalized educational resource recommendation. Specifically, we introduce a multimodal fusion (MMF) algorithm to extract and integrate heterogeneous learning behavior data-including text, images, and interaction logs-<i>via</i> stacked denoising autoencoders and Restricted Boltzmann Machines. We further design an adaptive learning (AL) module that constructs a student-resource interaction graph and dynamically recommends learning materials using a graph-enhanced contrastive learning strategy and a dual-MLP-based enhancement mechanism. Extensive experiments on the Students' Academic Performance Dataset demonstrate that our method significantly reduces prediction error (mean absolute error (MAE) = 0.01, mean squared error (MSE) = 0.0053) and achieves high precision (95.3%) and recall (96.7%). Ablation studies and benchmark comparisons validate the effectiveness and generalization ability of both MMF and AL. The system exhibits strong scalability, real-time responsiveness, and high user satisfaction, offering a robust technical foundation for next-generation AI-powered educational platforms.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e3157"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.3157","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancement of artificial intelligence, the demand for personalized and adaptive learning has driven the development of intelligent educational systems. This article proposes a novel adaptive learning-driven architecture that combines multimodal behavioral modeling and personalized educational resource recommendation. Specifically, we introduce a multimodal fusion (MMF) algorithm to extract and integrate heterogeneous learning behavior data-including text, images, and interaction logs-via stacked denoising autoencoders and Restricted Boltzmann Machines. We further design an adaptive learning (AL) module that constructs a student-resource interaction graph and dynamically recommends learning materials using a graph-enhanced contrastive learning strategy and a dual-MLP-based enhancement mechanism. Extensive experiments on the Students' Academic Performance Dataset demonstrate that our method significantly reduces prediction error (mean absolute error (MAE) = 0.01, mean squared error (MSE) = 0.0053) and achieves high precision (95.3%) and recall (96.7%). Ablation studies and benchmark comparisons validate the effectiveness and generalization ability of both MMF and AL. The system exhibits strong scalability, real-time responsiveness, and high user satisfaction, offering a robust technical foundation for next-generation AI-powered educational platforms.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.