{"title":"SENSH: a blockchain-based searchable encrypted data sharing scheme in smart healthcare.","authors":"Song Luo, Lihuan Tan, Tan Hu, Maoshuang Hu","doi":"10.7717/peerj-cs.3166","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of the Internet of Things technology has led to a boom in the adoption of intelligent healthcare management systems in the healthcare industry. However, it has also highlighted key issues such as security, privacy, and efficient query of medical data. Traditional methods for querying medical data suffer from severe data leakage risks, low query performance, and excessive storage space. This article proposes a comprehensive Secure ENcrypted Search for Health Scheme (SENSH) solution based on consortium blockchain and searchable encryption to address these challenges. SENSH enables efficient authorization management through Bloom filters, ensuring fast querying of large datasets by authorized users while saving storage space. It uses off-chain Advanced Encryption Standard (AES) and on-chain storage management for data protection, significantly reducing the likelihood of data exposure. The system is also enhanced with event triggering and logging mechanisms to support real-time monitoring and data tracing to meet audit compliance requirements. It provides version control and timestamping to accommodate dynamic data updates, employs an obfuscationfactor to prevent tag-based original data content leakage, and supports dynamic updating of tags to accommodate different access requirements. Experimental results show that SENSH excels in authorization management, privacy protection, defense against tampering, and anti-replay and Distributed Denial of Service (DDoS). Compared with existing schemes, SENSH has significant advantages in terms of gas consumption, computation cost, and execution time. It is particularly suited for the protection and efficient query of medical and health data.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e3166"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453776/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.3166","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of the Internet of Things technology has led to a boom in the adoption of intelligent healthcare management systems in the healthcare industry. However, it has also highlighted key issues such as security, privacy, and efficient query of medical data. Traditional methods for querying medical data suffer from severe data leakage risks, low query performance, and excessive storage space. This article proposes a comprehensive Secure ENcrypted Search for Health Scheme (SENSH) solution based on consortium blockchain and searchable encryption to address these challenges. SENSH enables efficient authorization management through Bloom filters, ensuring fast querying of large datasets by authorized users while saving storage space. It uses off-chain Advanced Encryption Standard (AES) and on-chain storage management for data protection, significantly reducing the likelihood of data exposure. The system is also enhanced with event triggering and logging mechanisms to support real-time monitoring and data tracing to meet audit compliance requirements. It provides version control and timestamping to accommodate dynamic data updates, employs an obfuscationfactor to prevent tag-based original data content leakage, and supports dynamic updating of tags to accommodate different access requirements. Experimental results show that SENSH excels in authorization management, privacy protection, defense against tampering, and anti-replay and Distributed Denial of Service (DDoS). Compared with existing schemes, SENSH has significant advantages in terms of gas consumption, computation cost, and execution time. It is particularly suited for the protection and efficient query of medical and health data.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.