Detection of offensive content in the Kazakh language using machine learning and deep learning approaches.

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-08-11 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.3027
Milana Bolatbek, Moldir Sagynay, Shynar Mussiraliyeva, Zhastay Yeltay
{"title":"Detection of offensive content in the Kazakh language using machine learning and deep learning approaches.","authors":"Milana Bolatbek, Moldir Sagynay, Shynar Mussiraliyeva, Zhastay Yeltay","doi":"10.7717/peerj-cs.3027","DOIUrl":null,"url":null,"abstract":"<p><p>This article addresses the urgent need to detect destructive content, including religious extremism, racism, cyberbullying, and nation oriented extremism messages, on social media platforms in the Kazakh language. Given the agglutinative structure and rich morphology of Kazakh, standard natural language processing (NLP) models require significant adaptation. The study employs a range of machine learning and deep learning techniques, such as logistic regression, support vector machines (SVM), and long short-term memory (LSTM) networks, to classify destructive content. This article demonstrates the effectiveness of combining n-gram and stemming methods with machine learning algorithms, achieving high accuracy in content classification. The findings underscore the importance of developing language-specific NLP tools tailored to Kazakh's linguistic complexities. This research not only contributes to ensuring online safety by detecting destructive content in Kazakh digital spaces, but also provides a framework for applying similar techniques to other lesser-resourced languages.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e3027"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.3027","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the urgent need to detect destructive content, including religious extremism, racism, cyberbullying, and nation oriented extremism messages, on social media platforms in the Kazakh language. Given the agglutinative structure and rich morphology of Kazakh, standard natural language processing (NLP) models require significant adaptation. The study employs a range of machine learning and deep learning techniques, such as logistic regression, support vector machines (SVM), and long short-term memory (LSTM) networks, to classify destructive content. This article demonstrates the effectiveness of combining n-gram and stemming methods with machine learning algorithms, achieving high accuracy in content classification. The findings underscore the importance of developing language-specific NLP tools tailored to Kazakh's linguistic complexities. This research not only contributes to ensuring online safety by detecting destructive content in Kazakh digital spaces, but also provides a framework for applying similar techniques to other lesser-resourced languages.

使用机器学习和深度学习方法检测哈萨克语中的攻击性内容。
本文讨论了在哈萨克语社交媒体平台上检测破坏性内容的迫切需要,包括宗教极端主义、种族主义、网络欺凌和面向国家的极端主义信息。鉴于哈萨克语的黏着结构和丰富的形态,标准的自然语言处理(NLP)模型需要进行重大调整。该研究采用了一系列机器学习和深度学习技术,如逻辑回归、支持向量机(SVM)和长短期记忆(LSTM)网络,对破坏性内容进行分类。本文展示了将n-gram和词干提取方法与机器学习算法相结合的有效性,实现了内容分类的高精度。研究结果强调了开发针对哈萨克语语言复杂性的特定语言的NLP工具的重要性。这项研究不仅有助于侦测哈萨克数位空间的破坏性内容,确保线上安全,也提供框架,将类似技术应用于其他资源较少的语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信