An advanced error state Kalman filter (ESKF)-based terrain contour matching (TERCOM) method for tracking an aerial vehicle using a low-cost digital elevation map.

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-08-25 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.3118
Muhammad Bilal Kadri, Sofia Yousuf
{"title":"An advanced error state Kalman filter (ESKF)-based terrain contour matching (TERCOM) method for tracking an aerial vehicle using a low-cost digital elevation map.","authors":"Muhammad Bilal Kadri, Sofia Yousuf","doi":"10.7717/peerj-cs.3118","DOIUrl":null,"url":null,"abstract":"<p><p>Terrain Aided Navigation (TAN) systems hold significant potential for delivering accurate navigation for Uncrewed Aerial Vehicles (UAVs). However, a major limitation of conventional TAN systems lies in the time-consuming correlation technique used to search the <i>a priori</i> map, specifically the Digital Elevation Maps (DEM). This article presents a fuzzy heuristic method for the mean absolute deviation (MAD) correlation scheme (FH-MAD), aimed at reducing the computational complexity and execution time of the TAN algorithm. The fuzzy logic system uses heading and roll angle data from onboard sensors to determine the aircraft's matching area. The output membership functions are designed based on parameters that depend on terrain features. Additionally, the proposed method incorporates an error state Kalman Filter (ESKF) as the navigation algorithm to estimate the UAV's position under various maneuvering conditions. To evaluate the effectiveness of the proposed system, tests were conducted using two distinct DEMs with varying topographical characteristics and dimensions. The results demonstrate improved position accuracy and a significant reduction in computation time compared to traditional TAN methods, making the approach suitable for real-time UAV navigation applications.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e3118"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453742/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.3118","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Terrain Aided Navigation (TAN) systems hold significant potential for delivering accurate navigation for Uncrewed Aerial Vehicles (UAVs). However, a major limitation of conventional TAN systems lies in the time-consuming correlation technique used to search the a priori map, specifically the Digital Elevation Maps (DEM). This article presents a fuzzy heuristic method for the mean absolute deviation (MAD) correlation scheme (FH-MAD), aimed at reducing the computational complexity and execution time of the TAN algorithm. The fuzzy logic system uses heading and roll angle data from onboard sensors to determine the aircraft's matching area. The output membership functions are designed based on parameters that depend on terrain features. Additionally, the proposed method incorporates an error state Kalman Filter (ESKF) as the navigation algorithm to estimate the UAV's position under various maneuvering conditions. To evaluate the effectiveness of the proposed system, tests were conducted using two distinct DEMs with varying topographical characteristics and dimensions. The results demonstrate improved position accuracy and a significant reduction in computation time compared to traditional TAN methods, making the approach suitable for real-time UAV navigation applications.

基于先进误差状态卡尔曼滤波(ESKF)的地形等高线匹配(TERCOM)方法用于低成本数字高程图跟踪飞行器。
地形辅助导航(TAN)系统具有为无人驾驶飞行器(uav)提供精确导航的巨大潜力。然而,传统TAN系统的一个主要限制在于用于搜索先验地图,特别是数字高程地图(DEM)的耗时相关技术。本文提出了一种模糊启发式的平均绝对偏差(MAD)相关方案(FH-MAD),旨在降低TAN算法的计算复杂度和执行时间。模糊逻辑系统使用机载传感器的航向和滚转角数据来确定飞机的匹配区域。根据地形特征的参数设计输出隶属函数。此外,该方法将误差状态卡尔曼滤波(ESKF)作为导航算法,用于估计无人机在各种机动条件下的位置。为了评估所提出系统的有效性,使用两个不同的dem进行了测试,这些dem具有不同的地形特征和尺寸。结果表明,与传统的TAN方法相比,该方法提高了定位精度,显著减少了计算时间,使该方法适合于无人机实时导航应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信