DDSUD: dynamically detecting subsequence uncertainty and diversity for active learning in imbalanced Chinese sentiment analysis.

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-08-11 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.3091
Shufeng Xiong, Yibo Si, Guipei Zhang, Bingkun Wang, Guang Zheng, Haiping Si
{"title":"DDSUD: dynamically detecting subsequence uncertainty and diversity for active learning in imbalanced Chinese sentiment analysis.","authors":"Shufeng Xiong, Yibo Si, Guipei Zhang, Bingkun Wang, Guang Zheng, Haiping Si","doi":"10.7717/peerj-cs.3091","DOIUrl":null,"url":null,"abstract":"<p><p>Sentiment structure analysis in Chinese text typically relies on supervised deep-learning methods for sequence labeling. However, obtaining large-scale labeled datasets is both resource-intensive and time-consuming. To address these challenges, this study proposes Dynamically Detecting Subsequence Uncertainty and Diversity (DDSUD), a Bidirectional Encoder Representations from Transformers (BERT)-based active learning framework designed to tackle subsequence uncertainty and enhance the diversity of imbalanced datasets. DDSUD combines subsequence uncertainty detection, diversity-driven sample selection, and dynamic weighting, enabling an adaptive balance between these factors throughout the active learning iterations. Experimental results show that DDSUD achieves performance close to fully supervised training schemes with only 50% of the data labeled, and outperforms other state-of-the-art active learning methods with the same amount of labeled data. Moreover, by dynamically adjusting the trade-off between subsequence uncertainty and diversity, DDSUD demonstrates strong adaptability and generalization capability in low-resource environments, especially in handling imbalanced datasets, significantly improving the recognition of minority class samples.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e3091"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.3091","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment structure analysis in Chinese text typically relies on supervised deep-learning methods for sequence labeling. However, obtaining large-scale labeled datasets is both resource-intensive and time-consuming. To address these challenges, this study proposes Dynamically Detecting Subsequence Uncertainty and Diversity (DDSUD), a Bidirectional Encoder Representations from Transformers (BERT)-based active learning framework designed to tackle subsequence uncertainty and enhance the diversity of imbalanced datasets. DDSUD combines subsequence uncertainty detection, diversity-driven sample selection, and dynamic weighting, enabling an adaptive balance between these factors throughout the active learning iterations. Experimental results show that DDSUD achieves performance close to fully supervised training schemes with only 50% of the data labeled, and outperforms other state-of-the-art active learning methods with the same amount of labeled data. Moreover, by dynamically adjusting the trade-off between subsequence uncertainty and diversity, DDSUD demonstrates strong adaptability and generalization capability in low-resource environments, especially in handling imbalanced datasets, significantly improving the recognition of minority class samples.

Abstract Image

Abstract Image

Abstract Image

动态检测子序列不确定性和多样性在不平衡汉语情感分析中的主动学习。
中文文本情感结构分析通常依赖于有监督的深度学习方法进行序列标注。然而,获取大规模标记数据集既耗费资源又耗费时间。为了解决这些挑战,本研究提出了动态检测子序列不确定性和多样性(DDSUD),这是一种基于双向编码器表示的主动学习框架,旨在解决子序列不确定性并增强不平衡数据集的多样性。DDSUD结合了子序列不确定性检测、多样性驱动的样本选择和动态加权,在整个主动学习迭代过程中实现了这些因素之间的自适应平衡。实验结果表明,DDSUD在只有50%的数据标记的情况下达到了接近全监督训练方案的性能,并且在相同数量的标记数据下优于其他最先进的主动学习方法。此外,通过动态调整子序列不确定性和多样性之间的权衡,DDSUD在低资源环境下表现出较强的适应性和泛化能力,特别是在处理不平衡数据集时,显著提高了对少数类样本的识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信