A social information sensitive model for conversational recommender systems.

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-08-21 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.3067
Abdulaziz Mohammed, Mingwei Zhang, Gehad Abdullah Amran, Husam M Alawadh, Ruizhe Wang, Amerah Alabrah, Ali A Al-Bakhrani
{"title":"A social information sensitive model for conversational recommender systems.","authors":"Abdulaziz Mohammed, Mingwei Zhang, Gehad Abdullah Amran, Husam M Alawadh, Ruizhe Wang, Amerah Alabrah, Ali A Al-Bakhrani","doi":"10.7717/peerj-cs.3067","DOIUrl":null,"url":null,"abstract":"<p><p>Conversational recommender systems (CRS) facilitate natural language interactions for more effective item suggestions. While these systems show promise, they face challenges in effectively utilizing and integrating informative data with conversation history through semantic fusion. In this study we present an innovative framework for extracting social information from conversational datasets by inferring ratings and constructing user-item interaction and user-user relationship graphs. We introduce a social information sensitive semantic fusion (SISSF) method that employs contrastive learning (CL) to bridge the semantic gap between generated social information and conversation history. We evaluated the framework on two public datasets (ReDial and INSPIRED) using both automatic and human evaluation metrics. Our SISSF framework demonstrated significant improvements over baseline models across all metrics. For the ReDial dataset, SISSF achieved superior performance in recommendation tasks (R@1: 0.062, R@50: 0.437) and conversational quality metrics (Distinct-2: 4.223, Distinct-3: 5.595, Distinct-4: 6.155). Human evaluation showed marked improvement in both fluency (1.81) and informativeness (1.63). We observed similar performance gains on the INSPIRED dataset, with notable improvements in recommendation accuracy (R@1: 0.046, R@10: 0.129, R@50: 0.269) and response diversity (Distinct-2: 2.061, Distinct-3: 4.293, Distinct-4: 6.242). The experimental results consistently validate the effectiveness of our approach in both recommendation and conversational tasks. These findings suggest that incorporating social context through CL can significantly improve the personalization and relevance of recommendations in conversational systems.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e3067"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453819/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.3067","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Conversational recommender systems (CRS) facilitate natural language interactions for more effective item suggestions. While these systems show promise, they face challenges in effectively utilizing and integrating informative data with conversation history through semantic fusion. In this study we present an innovative framework for extracting social information from conversational datasets by inferring ratings and constructing user-item interaction and user-user relationship graphs. We introduce a social information sensitive semantic fusion (SISSF) method that employs contrastive learning (CL) to bridge the semantic gap between generated social information and conversation history. We evaluated the framework on two public datasets (ReDial and INSPIRED) using both automatic and human evaluation metrics. Our SISSF framework demonstrated significant improvements over baseline models across all metrics. For the ReDial dataset, SISSF achieved superior performance in recommendation tasks (R@1: 0.062, R@50: 0.437) and conversational quality metrics (Distinct-2: 4.223, Distinct-3: 5.595, Distinct-4: 6.155). Human evaluation showed marked improvement in both fluency (1.81) and informativeness (1.63). We observed similar performance gains on the INSPIRED dataset, with notable improvements in recommendation accuracy (R@1: 0.046, R@10: 0.129, R@50: 0.269) and response diversity (Distinct-2: 2.061, Distinct-3: 4.293, Distinct-4: 6.242). The experimental results consistently validate the effectiveness of our approach in both recommendation and conversational tasks. These findings suggest that incorporating social context through CL can significantly improve the personalization and relevance of recommendations in conversational systems.

会话式推荐系统的社会信息敏感模型。
会话式推荐系统(CRS)促进了自然语言交互,以提供更有效的项目建议。虽然这些系统表现出了良好的前景,但它们在通过语义融合有效地利用和集成信息数据和会话历史方面面临着挑战。在这项研究中,我们提出了一个创新的框架,通过推断评级和构建用户-项目交互和用户-用户关系图,从会话数据集中提取社会信息。我们提出了一种社会信息敏感语义融合(SISSF)方法,该方法利用对比学习(CL)来弥合生成的社会信息和会话历史之间的语义差距。我们使用自动和人工评估指标在两个公共数据集(ReDial和INSPIRED)上评估了该框架。我们的SISSF框架在所有指标上都比基线模型有了显著的改进。对于ReDial数据集,SISSF在推荐任务(R@1: 0.062, R@50: 0.437)和会话质量指标(Distinct-2: 4.223, Distinct-3: 5.595, Distinct-4: 6.155)方面取得了优异的性能。人的评价显示流利性(1.81)和信息量(1.63)都有显著提高。我们在INSPIRED数据集上观察到类似的性能提升,在推荐准确率(R@1: 0.046, R@10: 0.129, R@50: 0.269)和响应多样性(Distinct-2: 2.061, Distinct-3: 4.293, Distinct-4: 6.242)方面有显著提高。实验结果一致地验证了我们的方法在推荐和会话任务中的有效性。这些研究结果表明,在会话系统中,通过社交语境的整合可以显著提高推荐的个性化和相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信