{"title":"Dose reduction in radiotherapy treatment planning CT via deep learning-based reconstruction: a single‑institution study.","authors":"Keisuke Yasui, Yuri Kasugai, Maho Morishita, Yasunori Saito, Hidetoshi Shimizu, Haruka Uezono, Naoki Hayashi","doi":"10.1007/s12194-025-00967-2","DOIUrl":null,"url":null,"abstract":"<p><p>To quantify radiation dose reduction in radiotherapy treatment-planning CT (RTCT) using a deep learning-based reconstruction (DLR; AiCE) algorithm compared with adaptive iterative dose reduction (IR; AIDR). To evaluate its potential to inform RTCT-specific diagnostic reference levels (DRLs). In this single-institution retrospective study, 4-part RTCT scans (head, head and neck, lung, and pelvis) were acquired on a large-bore CT. Scans reconstructed with IR (n = 820) and DLR (n = 854) were compared. The 75th-percentile CTDI<sub>vol</sub> and DLP (CTDI<sub>IR</sub>, DLP<sub>IR</sub> vs. CTDI<sub>DLR</sub>, DLP<sub>DLR</sub>) were determined per site. Dose reduction rates were calculated as (CTDI<sub>DLR</sub> - CTDI<sub>IR</sub>)/CTDI<sub>IR</sub> × 100% and similarly for DLP. Statistical significance was assessed by the Mann-Whitney U-test. DLR yielded CTDI<sub>vol</sub> reductions of 30.4-75.4% and DLP reductions of 23.1-73.5% across sites (p < 0.001), with the greatest reductions in head and neck RTCT (CTDI<sub>vol</sub>: 75.4%; DLP: 73.5%). Variability also narrowed. Compared with published national DRLs, DLR achieved 34.8 mGy and 18.8 mGy lower CTDI<sub>vol</sub> for head and neck versus UK-DRLs and Japanese multi-institutional data, respectively. DLR substantially lowers RTCT dose indices, providing quantitative data to guide RTCT-specific DRLs and optimize clinical workflows.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00967-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
To quantify radiation dose reduction in radiotherapy treatment-planning CT (RTCT) using a deep learning-based reconstruction (DLR; AiCE) algorithm compared with adaptive iterative dose reduction (IR; AIDR). To evaluate its potential to inform RTCT-specific diagnostic reference levels (DRLs). In this single-institution retrospective study, 4-part RTCT scans (head, head and neck, lung, and pelvis) were acquired on a large-bore CT. Scans reconstructed with IR (n = 820) and DLR (n = 854) were compared. The 75th-percentile CTDIvol and DLP (CTDIIR, DLPIR vs. CTDIDLR, DLPDLR) were determined per site. Dose reduction rates were calculated as (CTDIDLR - CTDIIR)/CTDIIR × 100% and similarly for DLP. Statistical significance was assessed by the Mann-Whitney U-test. DLR yielded CTDIvol reductions of 30.4-75.4% and DLP reductions of 23.1-73.5% across sites (p < 0.001), with the greatest reductions in head and neck RTCT (CTDIvol: 75.4%; DLP: 73.5%). Variability also narrowed. Compared with published national DRLs, DLR achieved 34.8 mGy and 18.8 mGy lower CTDIvol for head and neck versus UK-DRLs and Japanese multi-institutional data, respectively. DLR substantially lowers RTCT dose indices, providing quantitative data to guide RTCT-specific DRLs and optimize clinical workflows.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.