Improved pharmacokinetic parameter estimation from DCE-MRI via spatial-temporal information-driven unsupervised learning.

IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Xinyi He, Lu Wang, Qizhi Yang, Jiechao Wang, Zhen Xing, Dairong Cao, Congbo Cai, Shuhui Cai
{"title":"Improved pharmacokinetic parameter estimation from DCE-MRI via spatial-temporal information-driven unsupervised learning.","authors":"Xinyi He, Lu Wang, Qizhi Yang, Jiechao Wang, Zhen Xing, Dairong Cao, Congbo Cai, Shuhui Cai","doi":"10.1088/1361-6560/ae0aaf","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Pharmacokinetic (PK) parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provide quantitative characterization of tissue perfusion and permeability. However, existing deep learning methods for PK parameter estimation rely on either temporal or spatial features alone, overlooking the integrated spatial-temporal characteristics of DCE-MRI data. This study aims to remove this barrier by fully leveraging the spatial and temporal information to improve parameter estimation.<i>Approach.</i>A spatial-temporal information-driven unsupervised deep learning method (STUDE) was proposed. STUDE combines convolutional neural networks (CNNs) and a customized Vision Transformer to separately capture spatial and temporal features, enabling comprehensive modeling of contrast agent dynamics and tissue heterogeneity. Besides, a spatial-temporal attention feature fusion module was proposed to enable adaptive focus on both dimensions for more effective feature fusion. Moreover, the extended Tofts model imposed physical constraints on PK parameter estimation, enabling unsupervised training of STUDE. The accuracy and diagnostic value of STUDE was compared with the orthodox non-linear least squares (NLLS) and representative deep learning-based methods (i.e. gated recurrent unit, convolutional neural network, U-Net, and VTDCE-Net) on a numerical brain phantom and 87 glioma patients, respectively.<i>Main results.</i>On the numerical brain phantom, STUDE produced PK parameter maps with the lowest systematic and random errors even under low signal-to-noise ratio (SNR) conditions (SNR = 10 dB). On glioma data, STUDE generated parameter maps with reduced noise compared to NLLS and demonstrated superior structural clarity compared to other methods. Furthermore, STUDE outshined all other methods in the identification of glioma isocitrate dehydrogenase mutation status, achieving the area under the curve (AUC) values at 0.840 and 0.908 for the receiver operating characteristic curves of<i>K</i><sup>trans</sup>and V<sub>e</sub>, respectively. A combination of all PK parameters improved AUC to 0.926.<i>Significance.</i>STUDE advances spatial-temporal information-driven and physics-informed learning for precise PK parameter estimation, demonstrating its potential clinical significance.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ae0aaf","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Pharmacokinetic (PK) parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provide quantitative characterization of tissue perfusion and permeability. However, existing deep learning methods for PK parameter estimation rely on either temporal or spatial features alone, overlooking the integrated spatial-temporal characteristics of DCE-MRI data. This study aims to remove this barrier by fully leveraging the spatial and temporal information to improve parameter estimation.Approach.A spatial-temporal information-driven unsupervised deep learning method (STUDE) was proposed. STUDE combines convolutional neural networks (CNNs) and a customized Vision Transformer to separately capture spatial and temporal features, enabling comprehensive modeling of contrast agent dynamics and tissue heterogeneity. Besides, a spatial-temporal attention feature fusion module was proposed to enable adaptive focus on both dimensions for more effective feature fusion. Moreover, the extended Tofts model imposed physical constraints on PK parameter estimation, enabling unsupervised training of STUDE. The accuracy and diagnostic value of STUDE was compared with the orthodox non-linear least squares (NLLS) and representative deep learning-based methods (i.e. gated recurrent unit, convolutional neural network, U-Net, and VTDCE-Net) on a numerical brain phantom and 87 glioma patients, respectively.Main results.On the numerical brain phantom, STUDE produced PK parameter maps with the lowest systematic and random errors even under low signal-to-noise ratio (SNR) conditions (SNR = 10 dB). On glioma data, STUDE generated parameter maps with reduced noise compared to NLLS and demonstrated superior structural clarity compared to other methods. Furthermore, STUDE outshined all other methods in the identification of glioma isocitrate dehydrogenase mutation status, achieving the area under the curve (AUC) values at 0.840 and 0.908 for the receiver operating characteristic curves ofKtransand Ve, respectively. A combination of all PK parameters improved AUC to 0.926.Significance.STUDE advances spatial-temporal information-driven and physics-informed learning for precise PK parameter estimation, demonstrating its potential clinical significance.

基于时空信息驱动的无监督学习改进DCE-MRI药代动力学参数估计。
目的:动态对比增强磁共振成像(DCE-MRI)的药代动力学(PK)参数提供了组织灌注和通透性的定量表征。然而,现有的PK参数估计的深度学习方法要么只依赖于时间特征,要么只依赖于空间特征,忽略了DCE-MRI数据的综合时空特征。本研究旨在通过充分利用时空信息来改进参数估计,从而消除这一障碍。方法:提出了一种时空信息驱动的无监督深度学习方法(STUDE)。STUDE结合卷积神经网络(cnn)和定制视觉转换器(ViT)分别捕获空间和时间特征,实现造影剂动态和组织异质性的综合建模。此外,提出了一个时空注意(STA)特征融合模块,实现两个维度的自适应聚焦,实现更有效的特征融合。此外,扩展Tofts模型对PK参数估计施加了物理约束,使STUDE的无监督训练成为可能。将STUDE与传统的非线性最小二乘法(NLLS)和代表性的基于深度学习的方法(GRU、CNN、U-Net和VTDCE-Net)在数值脑幻像和87例胶质瘤患者上的准确率和诊断价值进行比较。 主要结果:在数值脑幻像上,STUDE在低信噪比条件下(信噪比= 10 dB)产生的PK参数图具有最低的系统误差和随机误差。在胶质瘤数据上,STUDE生成的参数图与NLLS相比具有更低的噪声,并且与其他方法相比具有更高的结构清晰度。此外,STUDE在识别胶质瘤异柠檬酸脱氢酶(IDH)突变状态方面优于其他所有方法,ktransandve的受试者工作特征曲线的曲线下面积(AUC)分别为0.840和0.908。所有PK参数的组合将AUC提高到0.926。 ;意义:STUDE推进了时空信息驱动和物理信息学习的精确PK参数估计,显示了其潜在的临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信