Annelie Puhlmann, Cihan Baydaroglu, Boris Schade, Michael Gradzielski, Beate Koksch
{"title":"Metal Ion–Induced Cross-Linking in Mucin-Inspired Peptide Hydrogels","authors":"Annelie Puhlmann, Cihan Baydaroglu, Boris Schade, Michael Gradzielski, Beate Koksch","doi":"10.1002/psc.70059","DOIUrl":null,"url":null,"abstract":"<p>Mucus is the biological hydrogel that lines the mucosal surfaces of mammals and acts as a protective barrier. Its main proteinaceous component is mucin, the high molecular weight, degree of glycosylation, and hardly uniquely defined nature of which hamper precise structures/property investigations based on biological samples. In contrast, chemically precisely defined peptide model systems inspired by such natural glycoproteins represent synthetically readily obtainable tools with excellent properties for both fundamental research and biomedical applications. Herein, we report the design and characterization of a library of histidine- and monosaccharide-containing coiled coil peptides that form hydrogels to different degrees in the presence of divalent metal ions Cu<sup>2+</sup>, Zn<sup>2+</sup>, Ca<sup>2+</sup>, and Fe<sup>2+</sup>. Using rheology, circular dichroism, and transmission electron microscopy, we determined the viscoelastic properties and global structures of these glycopeptide materials. This study reflects the interplay between glycan identity, histidine position, and divalent metal ion on the mechanical strength of these hydrogels.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70059","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mucus is the biological hydrogel that lines the mucosal surfaces of mammals and acts as a protective barrier. Its main proteinaceous component is mucin, the high molecular weight, degree of glycosylation, and hardly uniquely defined nature of which hamper precise structures/property investigations based on biological samples. In contrast, chemically precisely defined peptide model systems inspired by such natural glycoproteins represent synthetically readily obtainable tools with excellent properties for both fundamental research and biomedical applications. Herein, we report the design and characterization of a library of histidine- and monosaccharide-containing coiled coil peptides that form hydrogels to different degrees in the presence of divalent metal ions Cu2+, Zn2+, Ca2+, and Fe2+. Using rheology, circular dichroism, and transmission electron microscopy, we determined the viscoelastic properties and global structures of these glycopeptide materials. This study reflects the interplay between glycan identity, histidine position, and divalent metal ion on the mechanical strength of these hydrogels.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.