{"title":"3D gadolinium-enhanced high-resolution near-isotropic pancreatic imaging at 3.0-T MR using deep-learning reconstruction.","authors":"Sylvie Guan, Julie Poujol, Elodie Gouhier, Caroline Touloupas, Alexandre Delpla, Isabelle Boulay-Coletta, Marc Zins","doi":"10.1186/s13244-025-02066-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To compare overall image quality, lesion conspicuity and detectability on 3D-T1w-GRE arterial phase high-resolution MR images with deep learning reconstruction (3D-DLR) against standard-of-care reconstruction (SOC-Recon) in patients with suspected pancreatic disease.</p><p><strong>Materials and methods: </strong>Patients who underwent a pancreatic MR exam with a high-resolution 3D-T1w-GRE arterial phase acquisition on a 3.0-T MR system between December 2021 and June 2022 in our center were retrospectively included. A new deep learning-based reconstruction algorithm (3D-DLR) was used to additionally reconstruct arterial phase images. Two radiologists blinded to the reconstruction type assessed images for image quality, artifacts and lesion conspicuity using a Likert scale and counted the lesions. Signal-to-noise ratio and lesion contrast-to-noise ratio were calculated for each reconstruction. Quantitative data were evaluated using paired t-tests. Ordinal data such as image quality, artifacts and lesions conspicuity were analyzed using paired-Wilcoxon tests. Interobserver agreement for image quality and artifact assessment was evaluated using Cohen's kappa.</p><p><strong>Results: </strong>Thirty-two patients (mean age 62 years ± 12, 16 female) were included. 3D-DLR significantly improved SNR for each pancreatic segment and lesion CNR compared to SOC-Recon (p < 0.01), and demonstrated significantly higher average image quality score (3.34 vs 2.68, p < 0.01). 3D DLR also significantly reduced artifacts compared to SOC-Recon (p < 0.01) for one radiologist. 3D-DLR exhibited significantly higher average lesion conspicuity (2.30 vs 1.85, p < 0.01). The sensitivity was increased with 3D-DLR compared to SOC-Recon for both reader 1 and reader 2 (1 vs 0.88 and 0.88 vs 0.83, p = 0.62 for both results).</p><p><strong>Conclusion: </strong>3D-DLR images demonstrated higher overall image quality, leading to better lesion conspicuity.</p><p><strong>Critical relevance statement: </strong>3D deep learning reconstruction can be applied to gadolinium-enhanced pancreatic 3D-T1w arterial phase high-resolution images without additional acquisition time to further improve image quality and lesion conspicuity.</p><p><strong>Key points: </strong>3D DLR has not yet been applied to pancreatic MRI high-resolution sequences. This method improves SNR, CNR, and overall 3D T1w arterial pancreatic image quality. Enhanced lesion conspicuity may improve pancreatic lesion detectability.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"204"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-02066-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To compare overall image quality, lesion conspicuity and detectability on 3D-T1w-GRE arterial phase high-resolution MR images with deep learning reconstruction (3D-DLR) against standard-of-care reconstruction (SOC-Recon) in patients with suspected pancreatic disease.
Materials and methods: Patients who underwent a pancreatic MR exam with a high-resolution 3D-T1w-GRE arterial phase acquisition on a 3.0-T MR system between December 2021 and June 2022 in our center were retrospectively included. A new deep learning-based reconstruction algorithm (3D-DLR) was used to additionally reconstruct arterial phase images. Two radiologists blinded to the reconstruction type assessed images for image quality, artifacts and lesion conspicuity using a Likert scale and counted the lesions. Signal-to-noise ratio and lesion contrast-to-noise ratio were calculated for each reconstruction. Quantitative data were evaluated using paired t-tests. Ordinal data such as image quality, artifacts and lesions conspicuity were analyzed using paired-Wilcoxon tests. Interobserver agreement for image quality and artifact assessment was evaluated using Cohen's kappa.
Results: Thirty-two patients (mean age 62 years ± 12, 16 female) were included. 3D-DLR significantly improved SNR for each pancreatic segment and lesion CNR compared to SOC-Recon (p < 0.01), and demonstrated significantly higher average image quality score (3.34 vs 2.68, p < 0.01). 3D DLR also significantly reduced artifacts compared to SOC-Recon (p < 0.01) for one radiologist. 3D-DLR exhibited significantly higher average lesion conspicuity (2.30 vs 1.85, p < 0.01). The sensitivity was increased with 3D-DLR compared to SOC-Recon for both reader 1 and reader 2 (1 vs 0.88 and 0.88 vs 0.83, p = 0.62 for both results).
Conclusion: 3D-DLR images demonstrated higher overall image quality, leading to better lesion conspicuity.
Critical relevance statement: 3D deep learning reconstruction can be applied to gadolinium-enhanced pancreatic 3D-T1w arterial phase high-resolution images without additional acquisition time to further improve image quality and lesion conspicuity.
Key points: 3D DLR has not yet been applied to pancreatic MRI high-resolution sequences. This method improves SNR, CNR, and overall 3D T1w arterial pancreatic image quality. Enhanced lesion conspicuity may improve pancreatic lesion detectability.
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.