Jie Wang, Jun Nishiyama, Paula Parra-Bueno, Elwy Okaz, Goksu Oz, Xiaodan Liu, Tetsuya Watabe, Irena Suponitsky-Kroyter, Timothy E McGraw, Erzsebet M Szatmari, Ryohei Yasuda
{"title":"Rab10 inactivation promotes AMPAR trafficking and spine enlargement during long-term potentiation.","authors":"Jie Wang, Jun Nishiyama, Paula Parra-Bueno, Elwy Okaz, Goksu Oz, Xiaodan Liu, Tetsuya Watabe, Irena Suponitsky-Kroyter, Timothy E McGraw, Erzsebet M Szatmari, Ryohei Yasuda","doi":"10.7554/eLife.103879","DOIUrl":null,"url":null,"abstract":"<p><p>Rab-dependent membrane trafficking is critical for changing the structure and function of dendritic spines during synaptic plasticity. Here, we developed highly sensitive sensors to monitor Rab protein activity in single dendritic spines undergoing structural long-term potentiation (sLTP) in rodent organotypic hippocampal slices. During sLTP, Rab10 was persistently inactivated (>30 min) in the stimulated spines, whereas Rab4 was transiently activated over ~5 min. Inhibiting or deleting Rab10 enhanced sLTP, electrophysiological LTP, and AMPA receptor (AMPAR) trafficking during sLTP. In contrast, disrupting Rab4 impaired sLTP only in the first few minutes and decreased AMPAR trafficking during sLTP. Thus, our results suggest that Rab10 and Rab4 oppositely regulate AMPAR trafficking during sLTP, and inactivation of Rab10 signaling facilitates the induction of LTP and associated spine structural plasticity.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.103879","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rab-dependent membrane trafficking is critical for changing the structure and function of dendritic spines during synaptic plasticity. Here, we developed highly sensitive sensors to monitor Rab protein activity in single dendritic spines undergoing structural long-term potentiation (sLTP) in rodent organotypic hippocampal slices. During sLTP, Rab10 was persistently inactivated (>30 min) in the stimulated spines, whereas Rab4 was transiently activated over ~5 min. Inhibiting or deleting Rab10 enhanced sLTP, electrophysiological LTP, and AMPA receptor (AMPAR) trafficking during sLTP. In contrast, disrupting Rab4 impaired sLTP only in the first few minutes and decreased AMPAR trafficking during sLTP. Thus, our results suggest that Rab10 and Rab4 oppositely regulate AMPAR trafficking during sLTP, and inactivation of Rab10 signaling facilitates the induction of LTP and associated spine structural plasticity.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.