Alexander S. Banks, David B. Allison, Thierry Alquier, Ansarullah, Steven N. Austad, Johan Auwerx, Julio E. Ayala, Joseph A. Baur, Stefania Carobbio, Gary A. Churchill, Morten Dall, Rafael de Cabo, Jose Donato Jr., Nathalia R. V. Dragano, Carol F. Elias, Anthony W. Ferrante Jr., Brian N. Finck, Jose E. Galgani, Zachary Gerhart-Hines, Laurie J. Goodyear, Justin L. Grobe, Rana K. Gupta, Kirk M. Habegger, Sean M. Hartig, Andrea L. Hevener, Steven B. Heymsfield, Corey D. Holman, Martin Hrabě de Angelis, David E. James, Lawrence Kazak, Jae Bum Kim, Martin Klingenspor, Xingxing Kong, Sander Kooijman, Louise Lantier, K. C. Kent Lloyd, James C. Lo, Irfan J. Lodhi, Paul S. MacLean, Owen P. McGuinness, Gema Medina-Gómez, Raghavendra G. Mirmira, Christopher D. Morrison, Gregory J. Morton, Timo D. Müller, Yoshihiro Ogawa, David Pajuelo-Reguera, Matthew J. Potthoff, Nathan Qi, Marc L. Reitman, Patrick C. N. Rensen, Jan Rozman, Jennifer M. Rutkowsky, Kei Sakamoto, Philipp E. Scherer, Gary J. Schwartz, Radislav Sedlacek, Mohammed Selloum, Saame Raza Shaikh, Shuai Chen, Gerald I. Shulman, Vojtěch Škop, Alexander A. Soukas, John R. Speakman, Bruce M. Spiegelman, Gregory R. Steinberg, Katrin J. Svensson, John P. Thyfault, Tony Tiganis, Paul M. Titchenell, Nigel Turner, Licio A. Velloso, Antonio Vidal-Puig, Christopher S. Ward, Ashley S. Williams, Christian Wolfrum, Allison W. Xu, Ying Xu, Juleen R. Zierath, on behalf of The International Indirect Calorimetry Consensus Committee (IICCC)
{"title":"A consensus guide to preclinical indirect calorimetry experiments","authors":"Alexander S. Banks, David B. Allison, Thierry Alquier, Ansarullah, Steven N. Austad, Johan Auwerx, Julio E. Ayala, Joseph A. Baur, Stefania Carobbio, Gary A. Churchill, Morten Dall, Rafael de Cabo, Jose Donato Jr., Nathalia R. V. Dragano, Carol F. Elias, Anthony W. Ferrante Jr., Brian N. Finck, Jose E. Galgani, Zachary Gerhart-Hines, Laurie J. Goodyear, Justin L. Grobe, Rana K. Gupta, Kirk M. Habegger, Sean M. Hartig, Andrea L. Hevener, Steven B. Heymsfield, Corey D. Holman, Martin Hrabě de Angelis, David E. James, Lawrence Kazak, Jae Bum Kim, Martin Klingenspor, Xingxing Kong, Sander Kooijman, Louise Lantier, K. C. Kent Lloyd, James C. Lo, Irfan J. Lodhi, Paul S. MacLean, Owen P. McGuinness, Gema Medina-Gómez, Raghavendra G. Mirmira, Christopher D. Morrison, Gregory J. Morton, Timo D. Müller, Yoshihiro Ogawa, David Pajuelo-Reguera, Matthew J. Potthoff, Nathan Qi, Marc L. Reitman, Patrick C. N. Rensen, Jan Rozman, Jennifer M. Rutkowsky, Kei Sakamoto, Philipp E. Scherer, Gary J. Schwartz, Radislav Sedlacek, Mohammed Selloum, Saame Raza Shaikh, Shuai Chen, Gerald I. Shulman, Vojtěch Škop, Alexander A. Soukas, John R. Speakman, Bruce M. Spiegelman, Gregory R. Steinberg, Katrin J. Svensson, John P. Thyfault, Tony Tiganis, Paul M. Titchenell, Nigel Turner, Licio A. Velloso, Antonio Vidal-Puig, Christopher S. Ward, Ashley S. Williams, Christian Wolfrum, Allison W. Xu, Ying Xu, Juleen R. Zierath, on behalf of The International Indirect Calorimetry Consensus Committee (IICCC)","doi":"10.1038/s42255-025-01360-4","DOIUrl":null,"url":null,"abstract":"Understanding the complex factors influencing mammalian metabolism and body weight homeostasis is a long-standing challenge requiring knowledge of energy intake, absorption and expenditure. Using measurements of respiratory gas exchange, indirect calorimetry can provide non-invasive estimates of whole-body energy expenditure. However, inconsistent measurement units and flawed data normalization methods have slowed progress in this field. This guide aims to establish consensus standards to unify indirect calorimetry experiments and their analysis for more consistent, meaningful and reproducible results. By establishing community-driven standards, we hope to facilitate data comparison across research datasets. This advance will allow the creation of an in-depth, machine-readable data repository built on shared standards. This overdue initiative stands to markedly improve the accuracy and depth of efforts to interrogate mammalian metabolism. Data sharing according to established best practices will also accelerate the translation of basic findings into clinical applications for metabolic diseases afflicting global populations. The authors highlight inconsistencies and divergencies in the literature reporting data on indirect calorimetry for studies on whole-body energy homeostasis, and propose harmonization of standards to facilitate data comparison and interpretation across different datasets.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 9","pages":"1765-1780"},"PeriodicalIF":20.8000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s42255-025-01360-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the complex factors influencing mammalian metabolism and body weight homeostasis is a long-standing challenge requiring knowledge of energy intake, absorption and expenditure. Using measurements of respiratory gas exchange, indirect calorimetry can provide non-invasive estimates of whole-body energy expenditure. However, inconsistent measurement units and flawed data normalization methods have slowed progress in this field. This guide aims to establish consensus standards to unify indirect calorimetry experiments and their analysis for more consistent, meaningful and reproducible results. By establishing community-driven standards, we hope to facilitate data comparison across research datasets. This advance will allow the creation of an in-depth, machine-readable data repository built on shared standards. This overdue initiative stands to markedly improve the accuracy and depth of efforts to interrogate mammalian metabolism. Data sharing according to established best practices will also accelerate the translation of basic findings into clinical applications for metabolic diseases afflicting global populations. The authors highlight inconsistencies and divergencies in the literature reporting data on indirect calorimetry for studies on whole-body energy homeostasis, and propose harmonization of standards to facilitate data comparison and interpretation across different datasets.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.