{"title":"A comparative study of clinically used fast Monte Carlo dose engines for proton therapy","authors":"Sherif M. Gadoue, Narayan Sahoo","doi":"10.1002/acm2.70266","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Several fast Monte Carlo (MC) codes have been implemented and used to simulate proton transport and calculate patient doses in proton therapy. The resulting dose is typically compared to full MC codes, rather than other fast MC codes.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>The primary goal of this study was to compare the gamma pass rates (GPRs) of dose calculation from different fast MC codes to evaluate the accuracy of the computation and modeling among these codes.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Two GPU codes and one CPU MC code were commissioned to model our clinical proton beamline at University of Texas MD Anderson Cancer Center. The GPU models use single 2D Gaussian models, whereas the CPU model uses a double 2D Gaussian model. For comparative evaluation, 70 cancer patients were randomly selected from our clinical practice, 10 from each of the following treatment sites: head and neck, brain, esophagus, lung, mediastinum, spine, and prostate. The calculated dose was compared with the dose from the verification plan created in the clinical treatment planning system (TPS) using 3D gamma analysis.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The accuracy of dose calculation for all fast MC codes compared very well with the calculation from the TPS for the examined patient plans. GPR for all treatment sites ranged from 96.29% to 99.99%. In general, the double Gaussian model pass rate surpassed the single Gaussian model rate despite a slight accuracy reduction for prostate cases. GPRs for the single Gaussian codes ranged from 96.29% to 99.34%, whereas the double Gaussian model achieved a range of 98.68% to 99.99%.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>All commissioned codes we examined demonstrated acceptable 3D GPR across all patients and treatment sites tested. Although the CPU MC code was commissioned using a double 2D Gaussian model, the single 2D Gaussian model used in the GPU codes proved to be sufficiently effective, yielding a high GPR.</p>\n </section>\n </div>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":"26 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aapm.onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.70266","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://aapm.onlinelibrary.wiley.com/doi/10.1002/acm2.70266","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Several fast Monte Carlo (MC) codes have been implemented and used to simulate proton transport and calculate patient doses in proton therapy. The resulting dose is typically compared to full MC codes, rather than other fast MC codes.
Purpose
The primary goal of this study was to compare the gamma pass rates (GPRs) of dose calculation from different fast MC codes to evaluate the accuracy of the computation and modeling among these codes.
Methods
Two GPU codes and one CPU MC code were commissioned to model our clinical proton beamline at University of Texas MD Anderson Cancer Center. The GPU models use single 2D Gaussian models, whereas the CPU model uses a double 2D Gaussian model. For comparative evaluation, 70 cancer patients were randomly selected from our clinical practice, 10 from each of the following treatment sites: head and neck, brain, esophagus, lung, mediastinum, spine, and prostate. The calculated dose was compared with the dose from the verification plan created in the clinical treatment planning system (TPS) using 3D gamma analysis.
Results
The accuracy of dose calculation for all fast MC codes compared very well with the calculation from the TPS for the examined patient plans. GPR for all treatment sites ranged from 96.29% to 99.99%. In general, the double Gaussian model pass rate surpassed the single Gaussian model rate despite a slight accuracy reduction for prostate cases. GPRs for the single Gaussian codes ranged from 96.29% to 99.34%, whereas the double Gaussian model achieved a range of 98.68% to 99.99%.
Conclusion
All commissioned codes we examined demonstrated acceptable 3D GPR across all patients and treatment sites tested. Although the CPU MC code was commissioned using a double 2D Gaussian model, the single 2D Gaussian model used in the GPU codes proved to be sufficiently effective, yielding a high GPR.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic