Arrhenius Activation Energy and Zero Nanoparticles Flux Effects on Free Convection Flow of a Nanofluid Past an Isothermal Elliptical Cylinder with Internal Heat Generation
{"title":"Arrhenius Activation Energy and Zero Nanoparticles Flux Effects on Free Convection Flow of a Nanofluid Past an Isothermal Elliptical Cylinder with Internal Heat Generation","authors":"K.-A. Yih, Ch.-J. Huang","doi":"10.1134/S0021894425010067","DOIUrl":null,"url":null,"abstract":"<p>Arrhenius activation energy, zero nanoparticles flux, and internal heat generation effects on natural convection about an isothermal cylinder of elliptic cross section filled with a nanofluid are numerically analyzed in this paper. The nanofluid model involves Brownian motion and thermophoresis effects. The boundary condition of the zero nanoparticle flux causes the results to be more realistic and useful. By using a suitable coordinate transformation, the nonsimilar governing equations are achieved and then solved by Keller box method. Performing the comparisons with previously published work obtains the good agreement. The dimensionless temperature profiles and the Nusselt number results for the main parameters are presented in graphical and tabular forms. The physical aspects of the problem are discussed in details.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"66 1","pages":"20 - 31"},"PeriodicalIF":0.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894425010067","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Arrhenius activation energy, zero nanoparticles flux, and internal heat generation effects on natural convection about an isothermal cylinder of elliptic cross section filled with a nanofluid are numerically analyzed in this paper. The nanofluid model involves Brownian motion and thermophoresis effects. The boundary condition of the zero nanoparticle flux causes the results to be more realistic and useful. By using a suitable coordinate transformation, the nonsimilar governing equations are achieved and then solved by Keller box method. Performing the comparisons with previously published work obtains the good agreement. The dimensionless temperature profiles and the Nusselt number results for the main parameters are presented in graphical and tabular forms. The physical aspects of the problem are discussed in details.
期刊介绍:
Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.