{"title":"Improving Exploration in Deep Reinforcement Learning for Incomplete Information Competition Environments","authors":"Jie Lin;Yuhao Ye;Shaobo Li;Hanlin Zhang;Peng Zhao","doi":"10.1109/TETCI.2025.3555250","DOIUrl":null,"url":null,"abstract":"The sparse reward problem widely exists in multi-agent deep reinforcement learning, preventing agents from learning optimal actions and resulting in inefficient interactions with the environment. Many efforts have been made to design denser rewards and promote agent exploration. However, existing methods only focus on the breadth of action exploration, neglecting the rationality of action exploration in deep reinforcement learning, which leads to inefficient action exploration for agents. To address this issue, in this paper, we propose a novel curiosity-based action exploration method in incomplete information competition game environments, namely IGC, to improve both the breadth and rationality of action exploitation in multi-agent deep reinforcement learning for sparse-reward environments. Particularly, to enhance the capability of action exploration for agents, the distance reward is designed in our IGC method to increase the density of rewards in action exploration, thereby mitigating the sparse reward problem. In addition, by integrating the Intrinsic Curiosity Module (ICM) into DQN, we propose an enhanced ICM-DQN module, which enhances the breadth and rationality of subject action exploration for agents. By doing this, our IGC method can mitigate the randomness of the existing curiosity mechanism and increase the rationality of action exploration of agents, thereby enhancing the efficiency of action exploration. Finally, we evaluate the effectiveness of our IGC method on an incomplete information card game, namely Uno card game. The results demonstrate that our IGC method can achieve both better action exploration efficiency and greater winning-rate in comparison with existing methods.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 5","pages":"3665-3676"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10964687/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The sparse reward problem widely exists in multi-agent deep reinforcement learning, preventing agents from learning optimal actions and resulting in inefficient interactions with the environment. Many efforts have been made to design denser rewards and promote agent exploration. However, existing methods only focus on the breadth of action exploration, neglecting the rationality of action exploration in deep reinforcement learning, which leads to inefficient action exploration for agents. To address this issue, in this paper, we propose a novel curiosity-based action exploration method in incomplete information competition game environments, namely IGC, to improve both the breadth and rationality of action exploitation in multi-agent deep reinforcement learning for sparse-reward environments. Particularly, to enhance the capability of action exploration for agents, the distance reward is designed in our IGC method to increase the density of rewards in action exploration, thereby mitigating the sparse reward problem. In addition, by integrating the Intrinsic Curiosity Module (ICM) into DQN, we propose an enhanced ICM-DQN module, which enhances the breadth and rationality of subject action exploration for agents. By doing this, our IGC method can mitigate the randomness of the existing curiosity mechanism and increase the rationality of action exploration of agents, thereby enhancing the efficiency of action exploration. Finally, we evaluate the effectiveness of our IGC method on an incomplete information card game, namely Uno card game. The results demonstrate that our IGC method can achieve both better action exploration efficiency and greater winning-rate in comparison with existing methods.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.