{"title":"Efficient Weight Pruning for Optical Neural Networks: When Pruned Weights are Non-Zeros","authors":"Shuo Zhao;Kun Wu;Xin Li;Ying-Chi Chen","doi":"10.1109/TETCI.2025.3547856","DOIUrl":null,"url":null,"abstract":"Optical neural networks (ONNs) have emerged as a promising solution for energy-efficient deep learning. However, their resource-intensive manufacturing process necessitates efficient methods to streamline ONN architectures without sacrificing their performances. Weight pruning presents a potential remedy. Unlike the conventional neural networks, the pruned weights in ONNs are not necessarily zero in general, thereby making most traditional pruning methods inefficient. In this paper, we propose a novel two-stage pruning method tailored for ONNs. In the first stage, a first-order Taylor expansion of the loss function is applied to effectively identify and prune unimportant weights. To determine the shared value for the pruned weights, a novel optimization method is developed. In the second stage, fine-tuning is further applied to adjust the unpruned weights alongside the shared value of pruned weights. Experimental results on multiple public datasets demonstrate the efficacy of our proposed approach. It achieves superior model compression with minimum loss in accuracy over other conventional pruning techniques.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 5","pages":"3572-3581"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10933573/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Optical neural networks (ONNs) have emerged as a promising solution for energy-efficient deep learning. However, their resource-intensive manufacturing process necessitates efficient methods to streamline ONN architectures without sacrificing their performances. Weight pruning presents a potential remedy. Unlike the conventional neural networks, the pruned weights in ONNs are not necessarily zero in general, thereby making most traditional pruning methods inefficient. In this paper, we propose a novel two-stage pruning method tailored for ONNs. In the first stage, a first-order Taylor expansion of the loss function is applied to effectively identify and prune unimportant weights. To determine the shared value for the pruned weights, a novel optimization method is developed. In the second stage, fine-tuning is further applied to adjust the unpruned weights alongside the shared value of pruned weights. Experimental results on multiple public datasets demonstrate the efficacy of our proposed approach. It achieves superior model compression with minimum loss in accuracy over other conventional pruning techniques.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.