Machine learning reveals lithology and soil as critical parameters in landslide susceptibility for Petrópolis (Rio de Janeiro State, Brazil)

Enner Alcântara , Cheila Flávia Baião , Yasmim Carvalho Guimarães , José Roberto Mantovani , Jose Antonio Marengo
{"title":"Machine learning reveals lithology and soil as critical parameters in landslide susceptibility for Petrópolis (Rio de Janeiro State, Brazil)","authors":"Enner Alcântara ,&nbsp;Cheila Flávia Baião ,&nbsp;Yasmim Carvalho Guimarães ,&nbsp;José Roberto Mantovani ,&nbsp;Jose Antonio Marengo","doi":"10.1016/j.nhres.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>Petrópolis, located in the mountainous region of Rio de Janeiro, Brazil, is frequently impacted by severe landslides, exacerbated by intense rainfall, steep topography, and unregulated urban growth. This study employs machine learning to assess and predict landslide susceptibility, integrating geological, hydrological, and anthropogenic factors. Five models—Random Forest, CatBoost, Support Vector Machine, Artificial Artificial Neural Network (ANN), and XGBoost—were evaluated, with CatBoost emerging as the optimal model (F1-score: 0.82; AUC-ROC: 0.88). Variable importance analysis revealed soil type and erodibility as critical soil parameters influencing susceptibility, alongside lithology, underscoring the significance of geological over purely topographic factors. These findings emphasize the utility of machine learning for landslide modeling, providing scalable methodologies applicable to similar geospatial risk assessments worldwide. Beyond local applications, this work offers actionable insights for urban planning and disaster risk management in mountainous urban regions.</div></div>","PeriodicalId":100943,"journal":{"name":"Natural Hazards Research","volume":"5 3","pages":"Pages 539-553"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666592125000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Petrópolis, located in the mountainous region of Rio de Janeiro, Brazil, is frequently impacted by severe landslides, exacerbated by intense rainfall, steep topography, and unregulated urban growth. This study employs machine learning to assess and predict landslide susceptibility, integrating geological, hydrological, and anthropogenic factors. Five models—Random Forest, CatBoost, Support Vector Machine, Artificial Artificial Neural Network (ANN), and XGBoost—were evaluated, with CatBoost emerging as the optimal model (F1-score: 0.82; AUC-ROC: 0.88). Variable importance analysis revealed soil type and erodibility as critical soil parameters influencing susceptibility, alongside lithology, underscoring the significance of geological over purely topographic factors. These findings emphasize the utility of machine learning for landslide modeling, providing scalable methodologies applicable to similar geospatial risk assessments worldwide. Beyond local applications, this work offers actionable insights for urban planning and disaster risk management in mountainous urban regions.
机器学习揭示了岩石和土壤是Petrópolis滑坡易感性的关键参数(里约热内卢de Janeiro State,巴西)
Petrópolis位于巴西里约热内卢的山区,经常受到严重山体滑坡的影响,强降雨、陡峭地形和不受管制的城市增长加剧了山体滑坡。本研究利用机器学习来评估和预测滑坡易感性,整合地质、水文和人为因素。随机森林(random Forest)、CatBoost、支持向量机(Support Vector Machine)、人工神经网络(Artificial Artificial Neural Network, ANN)和xgboost 5个模型进行了评价,其中CatBoost模型为最优模型(f1score: 0.82; AUC-ROC: 0.88)。变量重要性分析显示,土壤类型和可蚀性是影响易感性的关键土壤参数,与岩性一起,强调了地质因素对纯粹地形因素的重要性。这些发现强调了机器学习在滑坡建模中的效用,提供了适用于全球类似地理空间风险评估的可扩展方法。除了本地应用,这项工作还为山区城市规划和灾害风险管理提供了可操作的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信