Phase-Engineered α/δ-FAPbI3 Heterojunctions for Valleytronics, Band Alignment, and Stability

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Lingkun Kong, , , Yulong Tang, , , Mengjia Feng, , , Wei Wang, , , Chenyang Zha, , and , Linghai Zhang*, 
{"title":"Phase-Engineered α/δ-FAPbI3 Heterojunctions for Valleytronics, Band Alignment, and Stability","authors":"Lingkun Kong,&nbsp;, ,&nbsp;Yulong Tang,&nbsp;, ,&nbsp;Mengjia Feng,&nbsp;, ,&nbsp;Wei Wang,&nbsp;, ,&nbsp;Chenyang Zha,&nbsp;, and ,&nbsp;Linghai Zhang*,&nbsp;","doi":"10.1021/acs.jpcc.5c02507","DOIUrl":null,"url":null,"abstract":"<p >Cubic FAPbI<sub>3</sub> perovskite exhibits exceptional optoelectronic properties, yet the α-to-δ phase transition mechanism remains incompletely understood. In this work, we construct α-FAPbI<sub>3</sub> (111)/δ-FAPbI<sub>3</sub> (0001) heterojunctions and employ density functional theory to investigate the impact of δ-phase formation on thermodynamic stability, along with electronic and optical properties. Our results demonstrate that a higher δ-phase content significantly enhances stability, with the α-to-δ phase transition occurring at a low energy barrier. Tuning the α/δ phase ratio induces a transition from type-I to type-II band alignment. Moreover, the hexagonal structures of α/δ-FAPbI<sub>3</sub> heterojunctions exhibit spin-valley coupling, indicating their potential as valleytronic materials─an effect rarely reported in halide perovskites. This allows for valley-selective excitation of spin-polarized carriers using left- or right-handed circularly polarized light. Additionally, the difference in work function between the two phases drives the spontaneous flow of electrons from α-FAPbI<sub>3</sub> to δ-FAPbI<sub>3</sub> and holes in the opposite direction. Careful design of the α/δ phase ratio allows for effective tuning of the optical properties of FAPbI<sub>3</sub>. These findings highlight the crucial role of α/δ phase engineering in tailoring the electronic and optical properties of FAPbI<sub>3</sub>, offering a theoretical foundation for the design of high-performance perovskite-based optoelectronic devices.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 38","pages":"17185–17194"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c02507","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cubic FAPbI3 perovskite exhibits exceptional optoelectronic properties, yet the α-to-δ phase transition mechanism remains incompletely understood. In this work, we construct α-FAPbI3 (111)/δ-FAPbI3 (0001) heterojunctions and employ density functional theory to investigate the impact of δ-phase formation on thermodynamic stability, along with electronic and optical properties. Our results demonstrate that a higher δ-phase content significantly enhances stability, with the α-to-δ phase transition occurring at a low energy barrier. Tuning the α/δ phase ratio induces a transition from type-I to type-II band alignment. Moreover, the hexagonal structures of α/δ-FAPbI3 heterojunctions exhibit spin-valley coupling, indicating their potential as valleytronic materials─an effect rarely reported in halide perovskites. This allows for valley-selective excitation of spin-polarized carriers using left- or right-handed circularly polarized light. Additionally, the difference in work function between the two phases drives the spontaneous flow of electrons from α-FAPbI3 to δ-FAPbI3 and holes in the opposite direction. Careful design of the α/δ phase ratio allows for effective tuning of the optical properties of FAPbI3. These findings highlight the crucial role of α/δ phase engineering in tailoring the electronic and optical properties of FAPbI3, offering a theoretical foundation for the design of high-performance perovskite-based optoelectronic devices.

Abstract Image

相位工程α/δ-FAPbI3异质结用于谷电子,带对准和稳定性
立方FAPbI3钙钛矿具有优异的光电性能,但其α-to-δ相变机理尚不完全清楚。在这项工作中,我们构建了α-FAPbI3 (111)/δ-FAPbI3(0001)异质结,并利用密度泛函理论研究了δ相形成对热力学稳定性以及电子和光学性质的影响。我们的研究结果表明,较高的δ相含量显著提高了稳定性,α到-δ相变发生在低能垒。α/δ相位比的调整诱导了从i型到ii型波段对准的转变。此外,α/δ-FAPbI3异质结的六边形结构表现出自旋-谷耦合,表明它们具有作为谷电子材料的潜力,这种效应在卤化物钙钛矿中很少报道。这允许谷选择性激发自旋极化载流子使用左手或右手圆偏振光。此外,由于两相的功函数不同,导致电子从α-FAPbI3自发流向δ-FAPbI3,并向相反方向的空穴流动。精心设计α/δ相位比可以有效地调谐FAPbI3的光学特性。这些发现突出了α/δ相位工程在调整FAPbI3的电子和光学特性方面的关键作用,为高性能钙钛矿基光电器件的设计提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信