Frances Towers Tompkins, Ekaterina Gousseva, Roger Bennett, Ricardo Grau-Crespo, Kevin R. J. Lovelock
{"title":"Core-level binding energies describe electrostatic potentials at nuclei for ionic liquids","authors":"Frances Towers Tompkins, Ekaterina Gousseva, Roger Bennett, Ricardo Grau-Crespo, Kevin R. J. Lovelock","doi":"10.1039/d5cp02411k","DOIUrl":null,"url":null,"abstract":"Electrostatic interactions in ionic liquids (ILs) dictate many of their physical properties and hence underpin a plethora of potential applications. It is vital to develop both experimental and theoretical electronic descriptors for ILs, to drive deeper understanding of the interactions that may be tuned for applications. A possible descriptor for ILs is the readily measurable core-level binding energy from experimental core-level X-ray photoelectron spectroscopy (XPS), <em>E</em><small><sub>B</sub></small>(core). To establish that differences in <em>E</em><small><sub>B</sub></small>(core) capture the differences in electrostatic potential at nuclei, <em>V</em><small><sub>n</sub></small>, we use a computational approach based on ab initio molecular dynamics (AIMD). We demonstrate clear quantitative (linear) correlations between experimental <em>E</em><small><sub>B</sub></small>(core) and calculated <em>V</em><small><sub>n</sub></small> for carbon, nitrogen, sulfur, oxygen and fluorine for both cations and anions. Our work shows that <em>E</em><small><sub>B</sub></small>(core) are interpretable descriptors of electrostatic interactions in ILs. This has implications for the ability to predict, out of the vast number of ILs that can form from the array of available cations and anions, the best IL properties for target applications. We also discuss how this work could open up new areas of enquiry, including about the usefulness of <em>V</em><small><sub>n</sub></small> to characterise interactions of ILs with surfaces and interfaces.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"40 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp02411k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrostatic interactions in ionic liquids (ILs) dictate many of their physical properties and hence underpin a plethora of potential applications. It is vital to develop both experimental and theoretical electronic descriptors for ILs, to drive deeper understanding of the interactions that may be tuned for applications. A possible descriptor for ILs is the readily measurable core-level binding energy from experimental core-level X-ray photoelectron spectroscopy (XPS), EB(core). To establish that differences in EB(core) capture the differences in electrostatic potential at nuclei, Vn, we use a computational approach based on ab initio molecular dynamics (AIMD). We demonstrate clear quantitative (linear) correlations between experimental EB(core) and calculated Vn for carbon, nitrogen, sulfur, oxygen and fluorine for both cations and anions. Our work shows that EB(core) are interpretable descriptors of electrostatic interactions in ILs. This has implications for the ability to predict, out of the vast number of ILs that can form from the array of available cations and anions, the best IL properties for target applications. We also discuss how this work could open up new areas of enquiry, including about the usefulness of Vn to characterise interactions of ILs with surfaces and interfaces.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.