{"title":"Approximating Volumetric Shape Gradients for Shape Optimization with Curved Boundaries Constrained by Parabolic PDEs","authors":"Leonardo Mutti, Michael Ulbrich","doi":"10.1137/24m1681938","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2026-2047, October 2025. <br/> Abstract. We quantify the accuracy of the approximate shape gradient for a shape optimization problem constrained by parabolic PDEs. The focus is on the volume form of the shape gradient, which is discretized using the finite element method and the implicit Euler scheme. Our estimate goes beyond previous work done in the elliptic setting and considers the error introduced by polygonal approximation of curved domains. Numerical experiments support the theoretical findings, and the code is made publicly available.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"156 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1681938","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2026-2047, October 2025. Abstract. We quantify the accuracy of the approximate shape gradient for a shape optimization problem constrained by parabolic PDEs. The focus is on the volume form of the shape gradient, which is discretized using the finite element method and the implicit Euler scheme. Our estimate goes beyond previous work done in the elliptic setting and considers the error introduced by polygonal approximation of curved domains. Numerical experiments support the theoretical findings, and the code is made publicly available.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.