{"title":"Quantifying spectral signatures of non-Markovianity beyond the Born-Redfield master equation","authors":"A. Keefe, N. Agarwal, A. Kamal","doi":"10.22331/q-2025-09-24-1863","DOIUrl":null,"url":null,"abstract":"Memory or time-non-local effects in open quantum dynamics pose theoretical as well as practical challenges in the understanding and control of noisy quantum systems. While there has been a comprehensive and concerted effort towards developing diagnostics for non-Markovian dynamics, all existing measures rely on time-domain measurements which are typically slow and expensive as they require averaging several runs to resolve small transient features on a broad background, and scale unfavorably with system size and complexity. In this work, we propose a spectroscopic measure of non-Markovianity which can detect persistent non-Markovianity in the system steady state. In addition to being experimentally viable, the proposed measure has a direct information theoretic interpretation: a large value indicates the information loss per unit bandwidth of making the Markov approximation. In the same vein, we derive a frequency-domain quantum master equation (FD-QME) that goes beyond the standard Born-Redfield description and retains the full memory of the state of the reduced system. Using the FD-QME and the proposed measure, we are able to reliably diagnose and quantify non-Markovianity in several system-environment settings including those with environmental correlations and retardation effects.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"2 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-09-24-1863","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Memory or time-non-local effects in open quantum dynamics pose theoretical as well as practical challenges in the understanding and control of noisy quantum systems. While there has been a comprehensive and concerted effort towards developing diagnostics for non-Markovian dynamics, all existing measures rely on time-domain measurements which are typically slow and expensive as they require averaging several runs to resolve small transient features on a broad background, and scale unfavorably with system size and complexity. In this work, we propose a spectroscopic measure of non-Markovianity which can detect persistent non-Markovianity in the system steady state. In addition to being experimentally viable, the proposed measure has a direct information theoretic interpretation: a large value indicates the information loss per unit bandwidth of making the Markov approximation. In the same vein, we derive a frequency-domain quantum master equation (FD-QME) that goes beyond the standard Born-Redfield description and retains the full memory of the state of the reduced system. Using the FD-QME and the proposed measure, we are able to reliably diagnose and quantify non-Markovianity in several system-environment settings including those with environmental correlations and retardation effects.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.