Dimitrios Bounias, Lina Simons, Michael Baumgartner, Chris Ehring, Peter Neher, Lorenz A Kapsner, Balint Kovacs, Ralf Floca, Paul F Jaeger, Jessica Eberle, Dominique Hadler, Frederik B Laun, Sabine Ohlmeyer, Lena Maier-Hein, Michael Uder, Evelyn Wenkel, Klaus H Maier-Hein, Sebastian Bickelhaupt
{"title":"Including AI in diffusion-weighted breast MRI has potential to increase reader confidence and reduce workload.","authors":"Dimitrios Bounias, Lina Simons, Michael Baumgartner, Chris Ehring, Peter Neher, Lorenz A Kapsner, Balint Kovacs, Ralf Floca, Paul F Jaeger, Jessica Eberle, Dominique Hadler, Frederik B Laun, Sabine Ohlmeyer, Lena Maier-Hein, Michael Uder, Evelyn Wenkel, Klaus H Maier-Hein, Sebastian Bickelhaupt","doi":"10.1093/jamia/ocaf156","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Breast diffusion-weighted imaging (DWI) has shown potential as a standalone imaging technique for certain indications, eg, supplemental screening of women with dense breasts. This study evaluates an artificial intelligence (AI)-powered computer-aided diagnosis (CAD) system for clinical interpretation and workload reduction in breast DWI.</p><p><strong>Materials and methods: </strong>This retrospective IRB-approved study included: n = 824 examinations for model development (2017-2020) and n = 235 for evaluation (01/2021-06/2021). Readings were performed by three readers using either the AI-CAD or manual readings. BI-RADS-like (Breast Imaging Reporting and Data System) classification was based on DWI. Histopathology served as ground truth. The model was nnDetection-based, trained using 5-fold cross-validation and ensembling. Statistical significance was determined using McNemar's test. Inter-rater agreement was calculated using Cohen's kappa. Model performance was calculated using the area under the receiver operating curve (AUC).</p><p><strong>Results: </strong>The AI-augmented approach significantly reduced BI-RADS-like 3 calls in breast DWI by 29% (P =.019) and increased interrater agreement (0.57 ± 0.10 vs 0.49 ± 0.11), while preserving diagnostic accuracy. Two of the three readers detected more malignant lesions (63/69 vs 59/69 and 64/69 vs 62/69) with the AI-CAD. The AI model achieved an AUC of 0.78 (95% CI: [0.72, 0.85]; P <.001), which increased for women at screening age to 0.82 (95% CI: [0.73, 0.90]; P <.001), indicating a potential for workload reduction of 20.9% at 96% sensitivity.</p><p><strong>Discussion and conclusion: </strong>Breast DWI might benefit from AI support. In our study, AI showed potential for reduction of BI-RADS-like 3 calls and increase of inter-rater agreement. However, given the limited study size, further research is needed.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf156","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Breast diffusion-weighted imaging (DWI) has shown potential as a standalone imaging technique for certain indications, eg, supplemental screening of women with dense breasts. This study evaluates an artificial intelligence (AI)-powered computer-aided diagnosis (CAD) system for clinical interpretation and workload reduction in breast DWI.
Materials and methods: This retrospective IRB-approved study included: n = 824 examinations for model development (2017-2020) and n = 235 for evaluation (01/2021-06/2021). Readings were performed by three readers using either the AI-CAD or manual readings. BI-RADS-like (Breast Imaging Reporting and Data System) classification was based on DWI. Histopathology served as ground truth. The model was nnDetection-based, trained using 5-fold cross-validation and ensembling. Statistical significance was determined using McNemar's test. Inter-rater agreement was calculated using Cohen's kappa. Model performance was calculated using the area under the receiver operating curve (AUC).
Results: The AI-augmented approach significantly reduced BI-RADS-like 3 calls in breast DWI by 29% (P =.019) and increased interrater agreement (0.57 ± 0.10 vs 0.49 ± 0.11), while preserving diagnostic accuracy. Two of the three readers detected more malignant lesions (63/69 vs 59/69 and 64/69 vs 62/69) with the AI-CAD. The AI model achieved an AUC of 0.78 (95% CI: [0.72, 0.85]; P <.001), which increased for women at screening age to 0.82 (95% CI: [0.73, 0.90]; P <.001), indicating a potential for workload reduction of 20.9% at 96% sensitivity.
Discussion and conclusion: Breast DWI might benefit from AI support. In our study, AI showed potential for reduction of BI-RADS-like 3 calls and increase of inter-rater agreement. However, given the limited study size, further research is needed.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.