Johannes Kippnich, Fabienne Benz, Hildegard Uecker, Franz Baumdicker
{"title":"Effectiveness of CRISPR-Cas in Sensitizing Bacterial Populations with Plasmid-Encoded Antimicrobial Resistance.","authors":"Johannes Kippnich, Fabienne Benz, Hildegard Uecker, Franz Baumdicker","doi":"10.1093/genetics/iyaf192","DOIUrl":null,"url":null,"abstract":"<p><p>The spread of bacteria resistant to antibiotics poses a serious threat to human health. Genes that encode antibiotic resistance are often harbored on plasmids, extra-chromosomal DNA molecules found in bacteria. The emergence of multiresistance plasmids is particularly problematic and demands the development of new antibiotics and alternative strategies. CRISPR-Cas derived tools with their sequence specificity offer a promising new approach to combating antibiotic resistance. By introducing CRISPR-Cas encoding plasmids that %specifically target antibiotic resistance genes on plasmids, the susceptibility of bacteria to conventional antibiotics can be restored. However, genetic variation within bacterial populations can hinder the effectiveness of such CRISPR-Cas tools by allowing some mutant plasmids to evade CRISPR-mediated cleaving or gene silencing. In this study, we develop a model to test the effectiveness of CRISPR-Cas in sensitizing bacterial populations carrying resistance on non-transmissible plasmids and assess the success probability of a subsequent treatment with conventional antibiotics. We evaluate this probability according to the target interference mechanism, the copy number of the resistance-encoding plasmid, and its compatibility with the CRISPR-Cas encoding plasmid. Our results identify promising approaches to revert antibiotic resistance with CRISPR-Cas encoding plasmids: A DNA-cleaving CRISPR-Cas system on a plasmid incompatible with the targeted plasmid is most effective for low copy numbers, while for resistance plasmids with higher copy numbers gene silencing by CRISPR-Cas systems encoded on compatible plasmids is the superior solution.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf192","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The spread of bacteria resistant to antibiotics poses a serious threat to human health. Genes that encode antibiotic resistance are often harbored on plasmids, extra-chromosomal DNA molecules found in bacteria. The emergence of multiresistance plasmids is particularly problematic and demands the development of new antibiotics and alternative strategies. CRISPR-Cas derived tools with their sequence specificity offer a promising new approach to combating antibiotic resistance. By introducing CRISPR-Cas encoding plasmids that %specifically target antibiotic resistance genes on plasmids, the susceptibility of bacteria to conventional antibiotics can be restored. However, genetic variation within bacterial populations can hinder the effectiveness of such CRISPR-Cas tools by allowing some mutant plasmids to evade CRISPR-mediated cleaving or gene silencing. In this study, we develop a model to test the effectiveness of CRISPR-Cas in sensitizing bacterial populations carrying resistance on non-transmissible plasmids and assess the success probability of a subsequent treatment with conventional antibiotics. We evaluate this probability according to the target interference mechanism, the copy number of the resistance-encoding plasmid, and its compatibility with the CRISPR-Cas encoding plasmid. Our results identify promising approaches to revert antibiotic resistance with CRISPR-Cas encoding plasmids: A DNA-cleaving CRISPR-Cas system on a plasmid incompatible with the targeted plasmid is most effective for low copy numbers, while for resistance plasmids with higher copy numbers gene silencing by CRISPR-Cas systems encoded on compatible plasmids is the superior solution.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.